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Abstract: Recent work has demonstrated that a promising strategy for teaching
robots a wide range of complex skills is by training them on a curriculum of
progressively more challenging environments. However, developing an effective
curriculum of environment distributions currently requires significant expertise,
which must be repeated for every new domain. Our key insight is that environ-
ments are often naturally represented as code. Thus, we probe whether effective
environment curriculum design can be achieved and automated via code generation
by large language models (LLM). In this paper, we introduce Eurekaverse, an
unsupervised environment design algorithm that uses LLMs to sample progres-
sively more challenging, diverse, and learnable environments for skill training.
We validate Eurekaverse’s effectiveness in the domain of quadrupedal parkour
learning, in which a quadruped robot must traverse through a variety of obstacle
courses. The automatic curriculum designed by Eurekaverse enables gradual
learning of complex parkour skills in simulation and can successfully transfer to
the real-world, outperforming manual training courses designed by humans.
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Figure 1: Eurekaverse teaches a quadrupedal robot to navigate diverse obstacle courses, including jumps,
climbs, and ramps.
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Figure 2: Eurekaverse automatically learns complex skills by performing agent-environment co-evolution,
which iterates between evolutionary environment generation and population-based policy training and evaluation.

1 Introduction

It is often hypothesized that the evolution of intelligent motor control in biology is driven by the need
to habituate in and adapt to varied environment conditions [1, 2]. Inspired by this observation, training
robot policies over a curriculum of environments has been shown to be an effective strategy for the
acquisition of complex robot skills [3–7]. Designing a useful curriculum of environments is, however,
time-consuming and requires domain-specific knowledge to work well [8]. In limited cases, when
the environment variations can be succinctly represented by scalar parameters [9, 10], unsupervised
environment design methods have shown capability in automatically generating progressively more
challenging tasks in low-dimensional simulation domains [9, 11, 12]. However, whether these
methods can scale up to challenging real-world robotic tasks is an open question.

Our key insight is that, in many practical robotics scenarios, environment variations can be represented
by diverse programs. This allows us to solve environment design using large language models (LLMs)
since they have been shown to excel at code generation in diverse domains [13–16]. We introduce
Eurekaverse, a language model powered environment curriculum design algorithm that can
generate and evolve environments in code space. At a technical level, Eurekaverse instructs an
LLM to generate novel environments to teach the target task, trains policies for each environment,
and evaluates the best-performing policies to inform the LLM when it generates the next round of
environments. Given that large language models (LLMs) have exhibited strong code generation
and self-improving capabilities on other domains [17–19], we hypothesize that using LLMs for
environment curriculum design could also enable learning complex robot skills. In particular, we
validate Eurekaverse’s efficacy on the task of quadrupedal parkour [20, 21], in which a quadruped
robot is tasked with traversing diverse and unknown challenging courses with varied terrains and
obstacles such as gaps, hurdles, boxes, and ramps. In order to train a policy deployable in the
real world, prior parkour methods carefully designed training courses in simulation that enable
real-world policy transfer [20, 21]. Because parkour courses are represented as programs that specify
detailed course terrain and geometry (see Fig. 3), we posit that parkour is an ideal testbed for testing
Eurekaverse’s capability in handling the complexity of evolving environment programs. Parkour
involves a rich variety of challenging locomotion skills so our results could also be of independent
interest for scaling up locomotion learning.

We demonstrate that the automatically generated curriculum of environments from Eurekaverse
leads to policy training that continuously improves over time without plateauing; in contrast, baselines
that only train over a fixed set of terrains, designed by either humans or an LLM, tend to overfit on
these training terrains, resulting in worse generalization to test simulation and real-world courses.
Specifically, on a set of 20 held-out simulation test courses that are carefully designed to holistically
evaluate robot parkour skills, Eurekaverse-trained policies outperforms various baselines and
ablations. Furthermore, on several real-world courses, Eurekaverse-trained policies successfully
transfer and exhibit more robust and adaptive behavior than policies trained using limited or manually
designed training courses.
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In summary, our contributions are:

1. Eurekaverse, an LLM-based unsupervised environment design algorithm that can automatically
generate curriculums of environment programs for robot skill learning.

2. Extensive simulation and real-world validation of Eurekaverse on quadrupedal robot parkour.

2 Related Work

Large Language Models for Robotics. Recent work has demonstrated that LLMs can be used
in robotics domains in various ways. They have demonstrated capabilities as high-level semantic
planners [22–34] and control policies [35–37]. Leveraging the code generation capability of LLMs,
recent work has also explored using LLMs to guide policy learning via reward function design [38–
41] and environment design [42–44]. In this latter category, prior work shows that LLMs can generate
varied environments for top-down pick-and-place tasks that enable semantic generalization [42] or
diverse tasks across different embodiments without clear intra-task dependencies [43]. In contrast,
our work is the first to demonstrate how LLMs can be used in an evolutionary approach to generate
full environment curricula that can guide the learning of complex physical skills such as parkour.
Finally, Ma et al. [44] proposes using LLMs to automatically sample physics parameter randomization
for sim-to-real policy learning [45–47]; physics randomization is a restricted class of environment
design, involving selecting a value range for each physics parameter in an enumerated list. Our
domain specification here is much larger, more complex, structured: it is a full-fledged program.
In our specific case study of robot parkour, this program specifies one out of a very large space of
environment geometries.

Environment Design and Curriculum Learning. Beyond using LLMs for environment program
generation, environment design and curriculum learning have been extensively studied in prior
literature. Prior works have considered framing environment design as a multi-agent game between
the environment generator and the policy [9–12, 48–51]; however, these methods require manually
designed environment generators and can handle only a small space of environment variations (e.g.,
layouts in a 2D maze), limiting their scalability to challenging problems such as parkour that has a
large and complex design space. Curriculum learning has been used in robotics to learn complex
skills [5, 52–56], but prior works use manually designed curricula or confined environment variation
space that require extensive domain expertise and tuning. Our work demonstrates how to scale
up adaptive environment curriculum for challenging physical skills by using LLMs to automate
environment generation and modification.

3 Problem Setting

In this section, we formalize the unsupervised environment design setting as introduced in [9]. First,
we model a fully specified environment as a Partially Observable Markov Decision Process (POMDP).
Here, an environment is a tuple M = (A,S,R,O, T , I, γ), where A is the space of actions, S is the
set of states, O is the set of observations, R : S×A → R is the reward function, T : S×A → ∆(S)
is the transition dynamics function, I : S → O is the emission function, and γ is the discount factor.
Given M , the goal of reinforcement learning is to learn a policy π : S → ∆(A) that maximizes the
cumulative discounted sum of rewards: V M (π) = Eπ,T [

∑T
t=0 γ

tR(st, at)].

Then, a POMDP template is a tuple M = (A,S,R,O,Θ, T , I, γ), where Θ represents the space
of environment variations that can be incorporated into the transition dynamics T : S × A ×
Θ → ∆(S). While environment configuration can include parameter variations such as simulation
physics values [44], in this work, we focus on semantic and geometric variations (e.g., different
parkour terrains) that are represented as programs. Given this, an environment curriculum can be
parameterized by a sequence of programs θ⃗ = (θ1, ..., θT ) ∈ ΘT . Then, in unsupervised environment
design (UED), we are interested in an environment generator Λ : Π → Θ that can generate a
curriculum of environments θ⃗ for the policy π ∈ Π to continue learning. The goal of UED is to
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Figure 3: Our prompt and in-context example (blue), an example LLM response (purple), and its visualization.
In the rendering, large red dots indicate goals, and the blue dot is the current goal; small dots indicate heading
command (direction to the goal).

learn a policy that can zero-shot generalize to unseen environments, maximizing
∑

i V
Mi(π) for

a set of unseen environments {Mtest,i} parameterized by Θtest = {θtest,i}. Therefore, Λ must be
able to generate both learnable and useful environments for policy learning in order to maximize
generalization capability.

In this work, we investigate whether LLMs can be an effective choice of Λ for designing robot
parkour courses for quadrupedal robots, where Θ can be thought of as the space of programs that
captures different terrain configurations.

4 Methods

At a high level, Eurekaverse proceeds as follows. First, it uses the LLM to generate an initial set
of environments to train on. Then, it uses a process we call agent-environment co-evolution, where
it iteratively uses reinforcement learning (RL) to train agents on the current set of environments,
followed by updating the set of environments so they continue to challenge the best current policy
without being too difficult for learning. Intuitively, as the best current policy learns to act more
effectively, the environments are evolved so they can more effectively improve this policy. This
strategy resembles a traditional curriculum learning pipeline, with the key difference being that the
curriculum itself is generated automatically by the LLM.

Throughout this section, we ground the exposition in the context of quadruped parkour to concretize
the method discussion; we note that the general algorithmic principle is broadly applicable to other
environment design problems. Implementation details and pseudocode are in the Appendix.

4.1 Initial Environment Generation

In order to design an effective environment curriculum, we require a mechanism for generating an
initial set of diverse environments. We first query the LLM, given a description of the task and
a single in-context example environment program; then, the LLM responds with an environment
program θ. To obtain a diverse set of training environments, we can sample the LLM multiple times
with nonzero temperature. In particular, given in-context example θincontext, we sample environments

θj ∼ Λinit
LLM(θincontext), j = 1, ..., NJ,

where N is the number of RL agents and J is the environments per agent (see Sec. 4.2 for details).
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In quadruped parkour, this configuration θj is an obstacle course terrain, specified as a height field—a
2D grid H that defines the height of coordinates along the ground plane—and a list of goal coordinates
C = (x1, y1), . . . (x8, y8). Both H and C are implemented as Python code and defined via for loops
and Numpy operations. Due to this programmatic format, our generation procedure also includes a
simple validity check for maximum height and maximum height difference thresholds to filter out
obviously impossible or incorrect terrains; details are in Appendix. See Figure 3 for the generation
prompt, in-context example, LLM output, and environment rendering.

4.2 Co-Evolution of Agents and Environments

The initial environments can already be used for training RL agents. However, a key issue is that the
LLM has zero knowledge about the RL agent’s capabilities and limitations, so they may not be very
useful for training. Furthermore, they are sampled i.i.d., so they are unlikely to form a progressively
more challenging curriculum. Indeed, as we show in our experiments, a single policy trained on these
environments is sub-optimal, as much of the training budget is likely spent on environments that are
too difficult or too easy for the agent’s current capabilities.

To address this issue, we propose a co-evolution approach of environments and agents. Specifically,
this process alternates between training RL agents to improve on the current set of environments,
and using the LLM to evolve the set of environments to further improve the agent. This alternating
strategy naturally leads the environments to form a curriculum for the corresponding RL agents. We
describe both of these steps in more detail below.

Policy evolution. At the beginning of each iteration, we use RL to train a population of N
agents {πi}Ni=1, each on its own training library of J environments {θij}Jj=1; this training hap-
pens independently and in parallel. Then, we evaluate each agent on the union of all environments
Θproxy = ∪i{θij}Jj=1 across all iterations, and select the best-performing policy πbest. In the first iter-
ation, the RL agents are randomly initialized; in the subsequent iterations, they are initialized to πbest

from the previous iteration. Thus, the policies progressively become more effective across iterations.

Intuitively, maintaining a population of agents increases the likelihood that some agents are trained
on useful environments and not affected by bad environments; then, evaluating policies on the union
of all environments selects the one that generalizes best to unseen environments.

Environment evolution. In the first iteration, the initial environments generated as described in
Sec. 4.1 are randomly split among the N RL agents. In subsequent iterations, we create new
environments by evolving those that were used to train πbest, {θbest

j }Jj=1. Since πbest is effective, these
environments are known to be effective for training. We then use the LLM to evolve them: for each
θj in this set, we provide the LLM θj and ask it to produce a variation on that environment:

θ̃j ∼ Λevol
LLM (θj , θincontext) . (1)

Here, θj serves as a previous LLM response, and our LLM prompt contains additional information
including environment statistics (e.g. maximum terrain height difference) and policy training statistics
(e.g. reward terms and success rate) as well as an in-context evolution example. See Appendix for
prompt and details. We perform this procedure independently N times, which produces a new set of
training libraries {θij}Jj=1, i = 1, . . . , N for the N policy training runs in the following iteration.

5 Experiments

5.1 Experimental Setup

Simulation Training. We adopt the simulation framework from Cheng et al. [21], which trains
parkour policies for the Unitree Go1 robot on obstacle course terrains defined by a height field and
goal coordinates. During training, terrains are instantiated at multiple difficulties affecting obstacle
dimensions and spacing. Policies are initialized at low difficulties, and they are promoted or demoted
to higher or lower difficulties depending on the number of goals reached. This procedure gradually
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introduces the policy to harder obstacles and ensures that the thousands of parallel training robots
cover a wide, diverse set of courses to avoid overfitting behaviors at local minima.

Using PPO [57], we train a teacher policy that takes in privileged scandot sensing (i.e., terrain heights
at specific positions around the robot). To deploy, we distill the teacher into a student that receives
depth frames from a front-facing camera. All methods and ablations use the same reward and training
setup. Additional training details are in the Appendix.

Algorithm Details. Eurekaverse uses GPT-4o as the LLM, and we run 5 iterations of generation,
each with 8 parallel policy training runs of 2000 steps. To teach our policy a stable walking gait
(which requires reward terms not relevant to parkour, e.g., torso orientation), we first pre-train a
simple walking policy with 1000 policy update steps. One full run of our method takes around 24
hours on 8 A6000 GPUs, each with 48 GB VRAM, and incurs an OpenAI API cost of around $15.

Methods. We compare Eurekaverse with the Human-Designed environments from Cheng
et al. [21], which were also designed for a generalist quadruped parkour agent. We emphasize
that this comparison does not take into account the time and training steps required to first design
Human-Designed optimally, whereas Eurekaverse must perform both environment design
and policy training within the allocated steps. Additionally, we compare to a Random baseline that
places randomly positioned ramps and boxes; these obstacles are sized randomly between half and
double the bounding box of the quadruped, making them feasible for a well-trained policy. Finally,
we consider an Oracle policy trained directly on the testing environment. Random serves as a
lower bound—confirming whether environment design is actually necessary—and Oracle serves
as an upper bound—if we have access to the true testing environment and can directly train on it.

Ablations. We also compare against various ablations to probe the importance of our algorithm
components. First, we run a variant that always asks the LLM to make the environments more chal-
lenging, without providing policy performance feedback (No Feedback). Next, we consider training
a policy for the same number of steps on only the initial set of LLM-generated environments (Initial
Envs), the set of environments in the final iteration (Final Envs), and a set of environments where
each terrain is generated sequentially, conditioned on previously-generated terrains, to maximize
diversity (Diversity Only). Finally, we train a policy on the in-context example provided to the LLM
(LLM Example).

5.2 Simulated Parkour Benchmark

To compare the zero-shot generalization performance of different policies in simulation, we design a
parkour benchmark suite consisting of 20 diverse parkour tasks as our testing environments. These
tasks are variations of real world obstacles seen in prior robot parkour learning works, such as box
climbing, forward ramps, sideways ramps, A-frames, box jumps, stepping stones, staircases, narrow
passages, agility poles, and balance beam [21, 58–63]. Note that these benchmark environments
are independent from the Human-Designed ones and not revealed to the LLM for environment
generation, holistically testing all methods’ generalization capability. For each of the 20 tasks, we
instantiate 10 versions scaled by difficulty. The benchmark is visualized in the Appendix.

5.3 Simulation Experiments Results

In Figure 4 (left), we report the benchmark performance of Eurekaverse, Human-Designed,
and Random across training steps as well as Oracle’s best performance. In Figure 4 (right), we
compare our method’s final performance with that of various ablations. Additionally, in Figure 5, we
compare Eurekaverse’s iterations with Human-Designed on each benchmark obstacle.

Environment design is necessary for parkour. First, we see that the Random baseline does
not increase performance on the benchmark, indicating it fails to learn in randomly-generated
environments; thus, careful environment design is needed to learn complex quadruped parkour skills.

Eurekaverse outperforms human-designed environments. On average, our method’s final
policy achieves nearly 2 additional goals over the policy trained on human-designed environments.
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Figure 4: Comparing sim benchmark performance across training steps for Eurekaverse and baselines (left),
and final benchmark performance for Eurekaverse and ablations (right). The training curve for ablations is
in Appendix. Experiments are run over 3 seeds.

Figure 5: Comparison of Eurekaverse’s iterations against Human-Designed, visualized per obstacle type
and over each difficulty (easiest to hardest) on sim benchmark. Higher area under the curve is better.

The latter learns quickly but plateaus; intuitively, though well-designed, the relatively small number
of distinct terrains limits the capacity for generalization. On the other hand, while our policy learns
slower in the first few iterations due to imperfect initial environments, it exhibits a stronger upward
trend since the environments are iteratively adapted to the current best policy, allowing the policy
to continuously improve. Similarly, we see in Figure 4 (right) that Eurekaverse surpasses LLM
Example, the human-created in-context example for the LLM queries; while the well-designed
example teaches the policy to succeed in a specific subset of benchmark tasks, the LLM can use it to
creatively construct a more diverse array of environments, thereby teaching a more generalist and
performant policy.

Eurekaverse nearly matches the oracle. After 5 iterations of design, our policy nears the
performance of Oracle in Figure 4, despite not receiving any information about the benchmark.

Eurekaverse generates a curriculum for continuous learning. From Figure 4 (right), we see
that Initial Envs and Final Envs achieve subpar results. Thus, neither teaches the policy a complete
set of parkour skills; the former was generated without information on the policy’s training progress,
and the latter is tuned for a policy that has already learned skills in previous iterations, making it
unsuitable for a beginner policy. Additionally, Diversity Only underperforms, showing that diverse
environments alone, without an adaptive curriculum, are insufficient for optimal performance. No
Feedback is also inferior; though it improves similarly to Eurekaverse in the initial iterations,
policy performance degrades as the evolved terrains fail to match the policy’s capabilities (see
Appendix). Thus, a curriculum tailored to policy training is necessary, rather than one that simply
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Figure 6: Policies trained on Eurekaverse parkour courses significantly outperform those trained on
Human-Designed across four distinct real-world tasks, each with a variety of difficulties.

increases difficulty. By building a curriculum that bridges the initial and final environments while
increasing diversity and taking into account policy feedback, Eurekaverse trains a policy that
gradually improves over each iteration; we see evidence of this in Figure 5, where our policy generally
improves at each benchmark obstacle type.

5.4 Real-World Experiments

Robot Deployment Details. We deploy on the Unitree Go1, a quadrupedal robot with 12 degrees of
freedom. Note that the Go1 weighs 12kg and is equipped with motors that have a maximum torque
of 23.70 Nm, which is significantly lower than prior work [20, 21] with the A1, whose motors reach
33.50 Nm and also weighs 12kg. Additional details are in Appendix.

Real-World Tasks. Figure 6 shows Eurekaverse’s and Human-Designed’s performance on
box climbing, gap crossing, forward ramp, and stairs tasks, four representative tasks in our simulation
benchmark as well as prior works [20, 21, 59, 60]. Box climbing involves getting on top of a box of
varying heights, and gap crossing involves jumping from one platform to another. In stairs, the robot
must traverse as many steps of stairs as possible, and in forward ramp, the robot must step onto and
go across a ramp, with difficulty determining the ramp angle.

Results. We deploy distilled policies from Eurekaverse and Human-Designed and compare
their success rates across the four tasks, each of which vary in difficulty corresponding to the key
obstacle property. In box climbing, gap crossing, and forward ramp, we perform 10 trials for each
difficulty; in stairs, we perform 10 trials total and measure the number of steps traversed. For each
obstacle, we initialize the robot at 5 preset locations with varying distance to the obstacle.

In all tasks, Eurekaverse generally outperforms Human-Designed across difficulties, succeed-
ing at jumps up to 75cm (above the Go1 length), climbing up over 50cm (above the Go1 height),
walking up a 30 degree ramp, and traversing the entire staircase. Our policy is also much more safe
and stable than Human-Designed, which often trips our controller’s motor power protection fault;
in the forward ramp task, Human-Designed incurred physical damages on our robot hardware, so
we refrained from completing the remaining trials (dotted line in Figure 6).

We also observe Eurekaverse exhibiting recovery behavior, where the policy quickly reacts to
slipping or misplaced feet; for example, if it misses a jump, it quickly kicks up its hind legs, allowing
the front feet to grab a more stable footing and climb up. Moreover, in the staircase trials, the policy is
robust to seeing chairs and railings on either side, despite never seeing similar features in simulation.
We hypothesize that this behavior is the result of two mechanisms: during training, policies fail
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Figure 7: Our policy overcomes challenging obstacle courses unseen during training. Each row is a series of
video frames from the same rollout on a course.

but have a chance to recover before the environment resets, and during depth distillation, random
blackout and noise augmentation increases robustness against out-of-distribution depth readings.

To further test the Eurekaverse policy’s versatility, we designed four diverse obstacle courses
after policy training. Thus, the policy has never seen these exact courses in simulation, though they
are similar in composition (e.g., jumps, climbs, etc.). The first course is a sequence of box climbing,
gap crossing, forward ramp, and walking across a deformable and bouncy yoga ball. The second
course is a box climb onto a narrow runway, followed by a 65cm gap with a significantly higher
landing platform that forces the policy to jump both laterally and vertically. The third course is a
rapid succession of jumps to platforms both lower and higher and ending with a leap onto a tilted
and slanted ramp. Finally, the fourth course involves objects thrown at the quadruped during forward
ramp and a dynamic gap that widens when the quadruped reaches it.

Our policy can successfully traverse all four courses, demonstrating its generality and versatile
behavior. Despite the challenging and varied obstacles, the policy succeeds with smooth actions
and some recovery motions, such as stabilizing after slipping on the ramp or landing gracefully
after clipping its foot on an edge. Full video recordings of these courses, as well as other clips and
highlights, are posted on our project website1.

6 Conclusion

We have presented Eurekaverse, a novel method for automated environment curriculum design
with large language models (LLMs). Eurekaverse generates effective environment programs
that adapts to the policy’s current training progress, enabling it to learn new skills and hone existing
ones. We validate our method on quadruped parkour, where our policy outperforms prior human-
designed ones in both zero-shot simulation and real environments. We believe that Eurekaverse
demonstrates the potential for LLMs to generate an infinite variation of environments, enabling
continuous policy learning and serving as a path toward truly open-ended, generalist robot agents.

Limitations. Our system requires a moderate amount of LLM samples to consistently generate and
select valuable environments; a important future direction necessary for scaling up is increasing
sample efficiency, for example by fine-tuning the LLM. Additionally, our evolution prompt only
uses textual feedback. A potential extension can additionally provide environment visualizations,
leveraging recent multimodal foundation models to potentially perform stronger spatial reasoning.

1https://eureka-research.github.io/eurekaverse/
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A Appendix

A.1 Algorithm Details

We provide additional implementation details for Eurekaverse below. We first describe the core
algorithm loop in pseudocode. Next, we describe “soft” policy selection, a more robust way to select
the best policy using evaluation on the proxy (all generated training) environments.

Algorithm 1 Eurekaverse
1: Require: RL algorithm A, coding LLM LLM, performance criteria F , LP transformation G
2: // Generate initial environments
3: θij ∼ Λinit

LLM(θincontext)
4: // Run iterations of co-evolution
5: for generation iteration t = 1 to T do
6: // Train multiple policies on environments
7: for run i = 1 to M do
8: πi = A({θij}Jj=1)
9: // Construct evaluation environment and select best policy

10: Θproxy = ∪i{θij}Jj=1 across iterations
11: πbest = argmaxπi F (πi,Θproxy)
12: // Evolve environments
13: θ̃best

j ∼ Λevol
LLM

(
θbest
j

)
14: Output: best final policy πbest

Soft Selection. During co-evolution, we select the best policy πbest via performance on all generated
environments Θproxy, which tests the policies’ generalization and serves as a proxy for the true testing
environment. Empirically, we find that this proxy accurately orders the policies, where the best policy
in Θproxy also performs the best in our simulation benchmark. Nonetheless, there are rare cases where
the best-performing benchmark policy is not the best one chosen by the proxy. To increase robustness
against these inaccuracies, we “softly” select the best policy during each iteration of co-evolution:
the selected policy is chosen randomly, where the best policy has probability p1, second-best has
probability p2 < p1, and so on. Each agent in the next iteration performs this selection independently
(so that Np1 are initialized to the best policy, Np2 are initialized to the second-best, etc.). In practice,
we select p1 = 0.75, p2 = 0.25, p3, . . . , pN = 0.

A.2 Prompts and Examples�
You are a reinforcement learning engineer trying to write environment functions as effectively

as possible for a quadruped robot parkour task. Please keep in mind that this robot will
be trained in simulation and deployed in a real world obstacle course, so we want the

obstacles to be realistic and challenging.

To do so, you should perform the following steps:
1. Carefully read the problem statement, specifications, and tips below.
2. Explain what your obstacle course will look like. Keep in mind that your obstacle sizes

should be relative to the quadruped’s size, and the entire obstacle should fit within the
terrain bounds. You should be creative when designing your obstacles, and You may draw

inspiration from features seen in dog parks, playgrounds, and urban environments.
3. Write a function that generates the obstacle course according to your plan.

Problem Statement:
You are given a quadruped robot that needs to navigate through an obstacle course in 3D space.

The floor of the course is represented as a 2D numpy array, height_field, where each
element represents the height of the ground at that point, in meters. To direct the
quadruped, the course has 8 goals that the quadruped must reach in order. The goal
locations should be stored in a 2D numpy array, goals, as (x, y) indices in height_field.

To create your course, you will write a function set_terrain(length, width, field_resolution,
difficulty) that creates and returns the height_field and goals arrays. The function
takes in the length and width of the course, in meters, the scale of quantization for the
obstacle course, in meters, and the difficulty of the obstacle course, a float between 0
(easiest) and 1 (hardest) inclusive. Please follow the template below to write your

function:
‘‘‘python
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import numpy as np
import random

def set_terrain(length, width, field_resolution, difficulty):
"""Description of your course and the tested skill."""

def m_to_idx(m):
"""Converts meters to quantized indices."""
return np.round(m / field_resolution).astype(np.int16) if not (isinstance(m, list) or

isinstance(m, tuple)) else [round(i / field_resolution) for i in m]

height_field = np.zeros((m_to_idx(length), m_to_idx(width)))
goals = np.zeros((8, 2))

# Your code here

return height_field, goals
‘‘‘

You can use any function from the numpy and random libraries as well as any in-built Python
functions. Please write everything as Python code and annotate your code with comments,
including a one-line docstring after the function definition that summarizes your
obstacle course.

Environment Specifications:
1. height_field quantizes the ground plane into a grid of points. field_resolution = 0.05, in

meters, is the quantization of the ground’s (x, y) axes, which represents the distance
between adjacent points in the height_field array.

2. The ground plane size is 12 x 4 meters, so the height_field.shape = (12 / field_resolution,
4 / field_resolution) = (240, 80). Please make sure that your obstacle course spans

exactly these dimensions.
3. The quadruped’s standing size (length, width, height) is 0.645 x 0.28 x 0.4 meters. Keep

these dimensions in mind when designing the size of your obstacles.
4. The quadruped will spawn with its center at (x, y, z) = (1, width / 2, 0) meters. You must

place obstacles at indices with x >= 2 / field_resolution to avoid the quadruped spawning
inside an obstacle.

5. Please make sure that your obstacles have a width of at least 1 meter. However, in rare
cases, we will allow narrow obstacles with length and width of at least 0.4 meters and no
smaller, as long as the quadruped is not expected to climb up or down.

6. The goal coordinates should be within the bounds of the course. Even if you have fewer than
8 obstacles, you must set all 8 goal positions in the goals array.

7. The quadruped will be instructed to travel in a straight line from one goal to the next.
Thus, if you want the quadruped to turn, you must place a goal at the turning point.

8. Your course should test a particular one of the robot’s skills, for example by repeating a
single type of obstacle. Make the course relatively consistent throughout. There will be
other courses to test other skills and different obstacles.

9. The heights in field_height can be negative. The quadruped’s spawning area will always be
at a height of 0 meters, so you can use negative heights to create pits or gaps in the
terrain. Use this to force the quadruped to walk or jump across the tops of your
obstacles without climbing up or down.

10. Since each index in the terrain has one height value, it is impossible to create overhangs
or tunnels. Do not try to create these features in your course.

Tips:
1. Do not call your function. Only write the function definition and the code inside it.
2. To broadcast a 1D array to a 2D array (or 2D slice), you must first add a new axis to the 1

D array.
3. You should not add noise directly to height_field. Random noisy terrain is not necessary

for our task, and we do not want it as an obstacle.
4. When slicing into height_field, make sure to convert from meters to quantized units

beforehand. For example, a 2 x 2 meter slice looks like [x - m_to_idx(1):x + m_to_idx(1),
y - m_to_idx(1):y + m_to_idx(1)].

5. If you write helper functions, please make them nested functions of set_terrain. Your
response should be a self-contained function definition following our template.� �

Listing 1: System Prompt. In the function template, we provide a conversion function m to idx to simplify the
conversion from coordinates, in meters, to the index in the array.�
The following is an example of a terrain generation function. Please reference the example

provided, but make your terrain different.

‘‘‘
import numpy as np

def set_terrain(length, width, field_resolution, difficulty):
"""Multiple platforms traversing a pit for the robot to climb on and jump across."""

def m_to_idx(m):
"""Converts meters to quantized indices."""
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return np.round(m / field_resolution).astype(np.int16) if not (isinstance(m, list) or
isinstance(m, tuple)) else [round(i / field_resolution) for i in m]

height_field = np.zeros((m_to_idx(length), m_to_idx(width)))
goals = np.zeros((8, 2))

# Set up platform dimensions
# We make the platform height near 0 at minimum difficulty so the quadruped can learn to
climb up
platform_length = 1.0 - 0.3 * difficulty
platform_length = m_to_idx(platform_length)
platform_width = np.random.uniform(1.0, 1.6)
platform_width = m_to_idx(platform_width)
platform_height_min, platform_height_max = 0.0 + 0.2 * difficulty, 0.05 + 0.25 *
difficulty
gap_length = 0.1 + 0.7 * difficulty
gap_length = m_to_idx(gap_length)

mid_y = m_to_idx(width) // 2

def add_platform(start_x, end_x, mid_y):
half_width = platform_width // 2
x1, x2 = start_x, end_x
y1, y2 = mid_y - half_width, mid_y + half_width
platform_height = np.random.uniform(platform_height_min, platform_height_max)
height_field[x1:x2, y1:y2] = platform_height

dx_min, dx_max = -0.1, 0.1
dx_min, dx_max = m_to_idx(dx_min), m_to_idx(dx_max)
dy_min, dy_max = -0.4, 0.4
dy_min, dy_max = m_to_idx(dy_min), m_to_idx(dy_max)

# Set spawn area to flat ground
spawn_length = m_to_idx(2)
height_field[0:spawn_length, :] = 0
# Put first goal at spawn
goals[0] = [spawn_length - m_to_idx(0.5), mid_y]

# Set remaining area to be a pit
# We do this to force the robot to jump from platform to platform
# Otherwise, the robot can just jump down and climb back up
height_field[spawn_length:, :] = -1.0

cur_x = spawn_length
for i in range(6): # Set up 6 platforms

dx = np.random.randint(dx_min, dx_max)
dy = np.random.randint(dy_min, dy_max)
add_platform(cur_x, cur_x + platform_length + dx, mid_y + dy)

# Put goal in the center of the platform
goals[i+1] = [cur_x + (platform_length + dx) / 2, mid_y + dy]

# Add gap
cur_x += platform_length + dx + gap_length

# Add final goal behind the last platform, fill in the remaining gap
goals[-1] = [cur_x + m_to_idx(0.5), mid_y]
height_field[cur_x:, :] = 0

return height_field, goals
‘‘‘� �
Listing 2: Initial Example. This example demonstrates the main structure of a terrain function, including helper
functions and a for loop over multiple obstacles.

�
We trained a quadruped policy to perform parkour on the obstacle course created by the

generation code above (as well as others), and we tracked the values of individual reward
components as well as other metrics such as the number of goals reached (out of 8),

episode length, and the rate of edge violations (feet too close to edge of obstacles):
<INSERT POLICY STATISTICS HERE>

We have also computed statistics for the terrain height of the direct path between goals
across multiple difficulties. Note that this is a heuristical shortest-path between goals
that approximates the locations an optimal quadruped would traverse. The statistics do

not reflect the actual path taken by the quadruped policy, nor does it include the height
of gaps, pits, and other obstacles that the quadruped would not step on:

<INSERT TERRAIN STATISTICS HERE>
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Please carefully analyze the statistics above and provide a new, improved generation function.
You should pay attention to which parts of the course the quadruped successfully learned
and which parts it struggled with. The goal of your course is to balance difficulty and

feasibility for the quadruped robot, allowing it to learn and perform better. Thus, if
the robot is getting stuck on a certain obstacle or goal, you should consider changing or
removing it. You should also follow the guidelines below:

- If the number of reached goals is over 80%, please create a harder course while ensuring
that it is feasible and safe for a real robot. You should consider adding more obstacles,
increasing the complexity of the course, and increasing the difficulty of existing

obstacles. For example, you can make climbing obstacles taller or jumping gaps wider.
- If the number of reached goals is below 20%, please create an easier course by decreasing

the difficulty of existing obstacles or simplifying the course layout. For example, you
can make climbing obstacles shorter or jumping gaps narrower. Please also double-check
that the course obstacles are fair and feasible for the quadruped.

- Otherwise, please create a variation of the current course with the same difficulty but
different obstacles. If the quadruped seems stuck on a certain obstacle, please change it
.

Again, please be creative when designing your course as we want to provide a diverse set of
training environments for the quadruped. Here is a list of the courses and skills that
the quadruped was already trained on. You may use them as inspiration, but please make
sure yours is different:

<INSERT TERRAIN DESCRIPTIONS HERE>

Please use the same template for the course generation function and provide a detailed
reasoning of the changes you made. The function signature should remain the same.� �

Listing 3: Evolution Prompt. Here, we insert policy training statistics including reward term values, episode
length, number of goals reached, and number of edge violations (feet too close to edge) both before and after
training. We also compute height field (terrain) statistics, including maximum value, maximum difference
between consecutive indices, and standard deviation. Finally, we provide the LLM with docstrings of previous
terrains used for training.

�
The following is an example of an initial terrain generation function.

‘‘‘
(SAME AS INITIAL EXAMPLE)
‘‘‘

And the following is an example of a new, improved terrain generation function that has more
complex obstacles. You can reference the example provided, but please make your terrain
different. This example serves to illustrate how terrains can be made more complex, but
you should tune the difficulty according to the previous instructions.

‘‘‘
import numpy as np

def set_terrain(length, width, field_resolution, difficulty):
"""Multiple sideways-facing ramps traversing a pit for the robot to climb on and jump
across."""

def m_to_idx(m):
"""Converts meters to quantized indices."""
return np.round(m / field_resolution).astype(np.int16) if not (isinstance(m, list) or

isinstance(m, tuple)) else [round(i / field_resolution) for i in m]

height_field = np.zeros((m_to_idx(length), m_to_idx(width)))
goals = np.zeros((8, 2))

# Set up platform and ramp dimensions
# We make the platform height near 0 at minimum difficulty so the quadruped can learn to
climb up
platform_length = 1.0 - 0.3 * difficulty
platform_length = m_to_idx(platform_length)
platform_width = np.random.uniform(1.0, 1.1) # Decrease platform width
platform_width = m_to_idx(platform_width)
platform_height_min, platform_height_max = 0.0 + 0.2 * difficulty, 0.05 + 0.25 *
difficulty
ramp_height_min, ramp_height_max = 0.0 + 0.5 * difficulty, 0.05 + 0.55 * difficulty
gap_length = 0.1 + 0.5 * difficulty # Decrease gap length
gap_length = m_to_idx(gap_length)

mid_y = m_to_idx(width) // 2

def add_platform(start_x, end_x, mid_y):
half_width = platform_width // 2
x1, x2 = start_x, end_x
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y1, y2 = mid_y - half_width, mid_y + half_width
platform_height = np.random.uniform(platform_height_min, platform_height_max)
height_field[x1:x2, y1:y2] = platform_height

def add_ramp(start_x, end_x, mid_y, direction):
half_width = platform_width // 2
x1, x2 = start_x, end_x
y1, y2 = mid_y - half_width, mid_y + half_width
ramp_height = np.random.uniform(ramp_height_min, ramp_height_max)
slant = np.linspace(0, ramp_height, num=y2-y1)[::direction]
slant = slant[None, :] # Add a dimension for broadcasting to x
height_field[x1:x2, y1:y2] = slant

dx_min, dx_max = -0.1, 0.1
dx_min, dx_max = m_to_idx(dx_min), m_to_idx(dx_max)
dy_min, dy_max = 0.0, 0.4 # Polarity of dy will alternate instead of being random
dy_min, dy_max = m_to_idx(dy_min), m_to_idx(dy_max)

# Set spawn area to flat ground
spawn_length = m_to_idx(2)
height_field[0:spawn_length, :] = 0
# Put first goal at spawn
goals[0] = [spawn_length - m_to_idx(0.5), mid_y]

# Set remaining area to be a pit
# We do this to force the robot to jump from platform to platform
# Otherwise, the robot can just jump down and climb back up
height_field[spawn_length:, :] = -1.0

# Add first platform
cur_x = spawn_length
dx = np.random.randint(dx_min, dx_max)
dy = np.random.randint(dy_min, dy_max)
add_platform(cur_x, cur_x + platform_length + dx, mid_y + dy)
goals[1] = [cur_x + (platform_length + dx) / 2, mid_y + dy]
cur_x += platform_length + dx + gap_length

for i in range(1, 6): # Set up 5 ramps
dx = np.random.randint(dx_min, dx_max)
dy = np.random.randint(dy_min, dy_max)
direction = (-1) ** i # Alternate left and right ramps
dy = dy * direction # Alternate positive and negative y offsets

add_ramp(cur_x, cur_x + platform_length + dx, mid_y + dy, direction)

# Put goal in the center of the ramp
goals[i+1] = [cur_x + (platform_length + dx) / 2, mid_y + dy]

# Add gap
cur_x += platform_length + dx + gap_length

# Add final goal behind the last ramp, fill in the remaining gap
goals[-1] = [cur_x + m_to_idx(0.5), mid_y]
height_field[cur_x:, :] = 0

return height_field, goals
‘‘‘� �
Listing 4: Evolution Example. The initial example is exactly the initial example above, and we provide an
example of evolving it; in our example, we replace some flat platforms with slanted ramps.

�
Here’s an alternative terrain generation function that focuses on creating a series of ramps

for the quadruped robot to navigate through. This course will test the robot’s ability to
handle inclined surfaces and maintain balance.

‘‘‘python
import numpy as np
import random

def set_terrain(length, width, field_resolution, difficulty):
"""Ramps of varying angles for the robot to climb and descend."""

def m_to_idx(m):
"""Converts meters to quantized indices."""
return np.round(m / field_resolution).astype(np.int16) if not (isinstance(m, list) or

isinstance(m, tuple)) else [round(i / field_resolution) for i in m]

height_field = np.zeros((m_to_idx(length), m_to_idx(width)))
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goals = np.zeros((8, 2))

# Initialize parameters
ramp_length = 1.0 + difficulty * 2.0 # Make ramps longer and steeper with higher
difficulty
ramp_length = m_to_idx(ramp_length)
ramp_height = 0.1 + difficulty * 0.4 # Ramp height varies with difficulty
ramp_height_change = ramp_height / ramp_length # Height change per quantized step
ramp_width = 1.0 # Set ramp width to 1 meter
ramp_width = m_to_idx(ramp_width)

mid_y = m_to_idx(width) // 2

def add_ramp(start_x, end_x, mid_y, upward=True):
"""Add a ramp either upward or downward starting from start_x."""
for i in range(start_x, end_x):

height = (i - start_x) * ramp_height_change if upward else (end_x - 1 - i) *
ramp_height_change

height_field[i, mid_y - ramp_width // 2: mid_y + ramp_width // 2] = height
if not upward:

height_field[i, mid_y - ramp_width // 2: mid_y + ramp_width // 2] -=
ramp_height # Adjust for downward ramp

dx_min, dx_max = -0.1, 0.1
dx_min, dx_max = m_to_idx(dx_min), m_to_idx(dx_max)
dy_min, dy_max = -0.4, 0.4
dy_min, dy_max = m_to_idx(dy_min), m_to_idx(dy_max)

# Set flat ground at the start
spawn_length = m_to_idx(2)
height_field[0:spawn_length, :] = 0
goals[0] = [spawn_length - m_to_idx(0.5), mid_y] # First goal at spawn

# Initial height is 0
cur_x = spawn_length
cur_upward = True # Start with an upward ramp

for i in range(7): # Set up 7 ramps
dx = np.random.randint(dx_min, dx_max)
dy = np.random.randint(dy_min, dy_max)
end_x = cur_x + ramp_length + dx

add_ramp(cur_x, end_x, mid_y + dy, upward=cur_upward)

# Place goal in the center of the ramp
goals[i+1] = [(cur_x + end_x) / 2, mid_y + dy]

# Switch direction (up or down)
cur_upward = not cur_upward
cur_x = end_x

# Final goal at the end of the last ramp
goals[-1] = [cur_x + m_to_idx(0.5), mid_y]
height_field[cur_x:, :] = 0

return height_field, goals
‘‘‘� �
Listing 5: Example LLM Output. This output generates multiple ramps in a configuration that’s distinctly
different from any previously-seen terrains.

A.3 Generated Terrain Examples

In Figure 8, we visualize some of the terrains generated by Eurekaverse. We see that the
complexity and difficulty generally increases each iteration, and the quadruped learns to pass through
progressively more difficult obstacle courses.

A.4 Environment Check and Automatic Fixing

For every LLM-generated terrain function, we first check that it is executable and feasible before using
it for training. We check the former by running the training script and the latter with simple heuristics:
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Figure 8: Visualizing a subset of our generated terrains, collected across 5 iterations within the three seeds of
Eurekaverse.

whether the maximum height is below 3 meters and whether the maximum height difference between
goals is below 0.8 meters (double the Unitree Go1’s standing height).

In our experiments, over 50% of terrains generated by GPT-4o pass the environment check. Common
errors include mis-scaling the height values to incorrect units, out-of-bounds index access, and
referencing missing helper functions or variables.

To save token usage and query costs, we also automatically fix invalid terrains: moving out-of-bounds
goals, setting the quadruped spawn area to flat ground, and expanding obstacles that are too skinny.
Note that these fixes can be easily replaced with assertions and additional LLM queries.

A.5 Simulation Setup

Environment Specification. We adopt the simulation framework from Cheng et al. [21], which
constructs an obstacle course terrain by quantizing the ground plane into a 2D grid and specifying the
height at each index in the grid. Along with the terrain heights, the course includes 8 goal positions
indicating both progression and heading the policy should follow. This specification is completely
defined via a Python function, which takes a difficulty parameter as input and outputs a 2D array for
terrain heights and a list of 8 (x, y) coordinates for the goal positions. In Eurekaverse, the LLM
is instructed to output precisely this function, which defines terrains θj modulated by the difficulty
argument.

Policy Training. We train the policy on multiple terrains in parallel; specifically, one round of training
consists of 10 terrain classes, each with 10 difficulties. Policies are initialized at low difficulties, and
if they reach gpromote goals, they are promoted to the next difficulty level; conversely, if they fail to
reach gdemote goals, they are demoted to the previous difficulty. Otherwise, they stay at the current
difficulty with probability pstay or go to a random previous difficulty with 1− pstay .

Following Cheng et al. [21], we first train a teacher policy using privileged scandot sensing. After
fully training a privileged teacher, we then distill a student policy that takes in depth frames from a
front-facing camera. Apart from the scandot or depth, the policy also receives proprioception and
heading and speed commands. We train the policy with PPO [57] with heading and velocity tracking
rewards, regularizations like action rate and torque, and penalties for foot placements near terrain
edges. We use this same reward across all methods and ablations.

Sim-To-Real. To facilitate sim-to-real transfer, as in Cheng et al. [21], we use regularized online
adaptation (ROA) [64], which trains an adaptation module that estimates environment properties
from observation history. We also domain randomize over physical properties like friction, mass,
and motor strength. During distillation, we introduce an action delay and depth sensing delay of 1
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simulation step (0.02s), and we update the depth frame only once every 5 steps (10Hz). Finally, we
introduce noise in the depth input, adding Gaussian noise to its true value and randomly setting some
pixels to 0.

Simulation Benchmark. In Figure 9, we render each of the 20 obstacles in our parkour benchmark.
Each of these obstacles is instantiated with 10 difficulties during evaluation, and these renders capture
the obstacles at medium difficulty.

Figure 9: Visualizing our simulated parkour benchmark, roughly organized by skill: climbing boxes, walking
on slopes, jumping, traversing stepping stones, climbing stairs, navigating narrow hallways, moving zig-zag
through agility poles, and balancing.

A.6 Environment Resampling

Previously, Eurekaverse also included a resampling mechanism: each evolution iteration, we
selected high quality terrains from prior iterations for training. Specifically, terrains were chosen
with probability proportional to learning progress [65–67], the difference in the policy’s performance
on that terrain before and after training on it. In our previous results, this increased the number of
evaluation goals reached.

Additional experiments revealed that this mechanism is not necessary if we tune the inner difficulty
progression (described in 5.1). Specifically, we adjusted it to diversify the parkour courses experienced
across parallel agents during training, setting gpromote = 8 ∗ 0.8, gdemote = 8 ∗ 0.4, pstay = 0.75. In
doing so, the policy is much less likely to fall into the local minima of an individual parkour course,
increasing its robustness to malformed or difficult terrain. After increasing diversity, we find that this
change negates the benefit derived from environment resampling, whose effect was to avoid local
minima by improving the quality of terrains used for training.

Since we observe that a careful configuration of the inner difficulty progression offsets the benefit of
environment resampling, we opt to remove the latter from our method. This change streamlines our
method while achieving higher evaluation results.

A.7 Deployment Details

We deploy on the Unitree Go1, a quadrupedal robot with 12 degrees of freedom. When standing,
the robot is 64.5 cm long, 28 cm wide, and 40 cm tall. We use the 3D camera mount introduced
by Zhuang et al. [20] to attach an Intel RealSense D435 camera onto the Go1’s head. Our vision
policy runs onboard the Nvidia Jetson Xavier NX, with the depth encoder running asynchronously at
10 Hz and the policy at 50 Hz. Before depth inputs are passed through the depth encoder, we crop
the left and right edges to remove dead pixels; we then apply hole-filling and temporal filters and
down-sample the resolution from 270x480 to 60x90.
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A.8 Ablations

In Figure 10, we plot the performance of ablations from Figure 4 (right). All ablations plateau or
degrade except for Eurekaverse.

Figure 10: Comparing sim benchmark performance across training steps for Eurekaverse and ablations.
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