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Abstract—Transferring policies learned in simulation to the

real world is a promising strategy for acquiring robot skills at
scale. However, sim-to-real approaches typically rely on manual
design and tuning of the task reward function as well as the
simulation physics parameters, rendering the process slow and
human-labor intensive. In this paper, we investigate using Large
Language Models (LLMs) to automate and accelerate sim-to-
real design. Our LLM-guided sim-to-real approach requires only
the physics simulation for the target task and automatically
constructs suitable reward functions and domain randomization
distributions to support real-world transfer. We first demonstrate
our approach can discover sim-to-real configurations that are
competitive with existing human-designed ones on quadruped
locomotion and dexterous manipulation tasks. Then, we showcase
that our approach is capable of solving novel robot tasks, such
as quadruped balancing and walking atop a yoga ball, without
iterative manual design.

I. INTRODUCTION

Given their internet-scale training data, large language
models (LLMs) have emerged as effective sources of common
sense priors for robotics [1–6]. Directly synthesizing robot
policies from LLMs is difficult because it does not explicitly
reason through the physics of the environment, however, when
a simulator is available, we can combine the impressive world
knowledge of LLMs together with the approximate physics
knowledge in the simulator to learn complex low-level skills.
Recent works have pursued this intersection and use LLMs
to synthesize reward functions [7–9] that can supervise robot
reinforcement learning. However, thus far, these approaches
have only been used in simulation, and transferring the policies
to the real world still requires significant manual tuning of
the simulators. In a typical process for sim-to-real policy
synthesis, human engineers must manually and iteratively
design reward functions and adjust simulation parameters until
the configurations converge to enable stable policy learning.
[10]. Thus, a natural question is whether we can additionally use
LLMs to automate the components in the sim-to-real process
that require intensive human efforts.

In this work, we propose DrEureka (Domain
Randomization Eureka), a novel algorithm that leverages
LLMs to automate reward design and domain randomization
parameter configuration simultaneously for sim-to-real transfer.
While there are many sim-to-real techniques [11–13], we
focus on domain randomization because we believe that it
is primed for LLMs to automate. Domain randomization
(DR) is a family of approaches that apply randomization
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over a distribution of physical parameters in simulation, so
that the learned policy can be robust against perturbance
and transfers to the real world better [13–15]. In DR, it is
critical to select the right parameter distribution to ensure a
successful transfer [16, 17]. This step is often manually tuned
by humans, because it is a challenging optimization problem
that requires common sense physical reasoning (e.g., friction
is important for walking on different surfaces) and knowledge
of the robot system. These characteristics of designing DR
parameters make it an ideal problem for LLMs to tackle
because of their strong grasp of physical knowledge [1, 18]
and effectiveness in generating hypotheses, providing good
initializations to complex search and black-box optimization
problems in a zero-shot manner [9, 19–22]. In DrEureka,
we show that these two distinct capabilities of LLMs can make
them effective automated designers for DR configurations.

However, jointly optimizing for both reward functions and
domain randomization parameters requires searching in a
vast, infinite-dimensional function space, which is expensive
and inefficient for LLMs to perform. Instead, DrEureka
decomposes the optimization into three stages: an LLM first
synthesizes reward functions, then an initial policy is rolled
out in perturbed simulations to create a suitable sampling
range for physics parameters, which is finally used by the
LLM to generate valid domain randomization configurations.
Specifically, to generate the highest quality of reward functions,
we build on Eureka [9], a state-of-the-art LLM-based reward
design algorithm that can generate free-form, effective reward
functions in code. To make Eureka reward functions more
amenable for real-world transfer, we propose to include safety
instructions in the prompt to automatically generate reward
functions that induce safer behavior. Then, equipped with
the best reward candidate as well as the associated policy,
DrEureka constructs reward-aware physics priors (RAPP)
over environment physics parameters by evaluating the policy
on various perturbed simulation dynamics; this procedure
grounds the effective search ranges for LLM sampling of do-
main randomization configurations. Finally, the LLM receives
the reward-aware prior as context and generates several DR
distribution candidates to re-train policies more suitable for real-
world deployment. Altogether, DrEureka is a language-model
driven pipeline for sim-to-real transfer with minimal human
intervention. A conceptual overview of the full algorithm is
shown in Figure 1.

We evaluate DrEureka on quadruped and dexterous ma-
nipulator platforms, demonstrating that our method is general
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Fig. 1: DrEureka takes the task and safety instruction, along with environment source code, and runs Eureka to generate a regularized
reward function and policy. Then, it tests the policy under different simulation conditions to build a reward-aware physics prior, which is
provided to the LLM to generate a set of domain randomization (DR) parameters. Finally, using the synthesized reward and DR parameters,
it trains policies for real-world deployment.

and applicable to diverse robots and tasks. Our experiments
primarily focus on quadruped locomotion and dexterous
manipulation because reward design, domain randomization,
and sim-to-real reinforcement learning at large have already
established as critical components of effective policy learning
strategies within these domains [17, 23–29]. Naturally, there
are well-tested, open-sourced simulation environments that
provide ideal testbeds for assessing DrEureka’s capability
for supervising sim-to-real transfer [23, 26, 30]; as a reference
point, our main comparison is with two existing human-
designed configurations [25, 30] in order to demonstrate that
DrEureka can autonomously achieve useful level of sim-
to-real design. On quadruped locomotion, DrEureka-trained
policies outperform those trained with human-designed reward
functions and DR parameters by 34% in forward velocity and
20% in distance travelled across various real-world evaluation
terrains. In dexterous manipulation, DrEureka’s best policy
performs nearly 300% more in-hand cube rotations than the
human-developed policy within a fixed time period. Through
extensive ablation studies, we first confirm that DrEureka
generates effective safety-regularized reward functions that are
more effective than either human-designed or Eureka reward
functions without our safety instruction mechanism. Then,
we demonstrate that DrEureka’s DR sampling mechanism
is indispensable and efficient via several DR-optimization
baselines and ablations that probe the importance of both
the reward-aware physics priors as well as using LLM for
sampling. Finally, to demonstrate how DrEureka can be used
to accelerate sim-to-real on a new task, we test DrEureka on
the novel and challenging walking globe task commonly seen
in circus, where the quadruped attempts to balance and walk on
a yoga ball for as long as possible. Trained with DrEureka,

Fig. 2: Our quadruped locomotion, dexterous cube rotation, and walk-
ing globe tasks. Walking globe is a novel task to show DrEureka’s
capability for guiding the sim-to-real transfer of a challenging new
task without pre-existing sim-to-real configurations.

our policy can stay balanced on a real yoga ball for minutes
on diverse indoor and ourdoor terrains with minimal safety
support.

In summary, our contributions are:
1) DrEureka, an LLM-guided sim-to-real algorithm that

can automatically synthesize effective reward and domain
randomization designs for sim-to-real transfer;

2) Extensive real world validation and analysis of
DrEureka on representative robot tasks; and

3) Demonstration on a novel, challenging task.

II. RELATED WORK

Large Language Models for Robotics. Large Language
Models (LLMs) have demonstrated capabilities as semantic
planners [1–3, 31], action models [5, 32, 33], and symbolic
programmers [2, 4, 34–41] for robotics applications. Recent
works have explored using LLMs to guide the learning of
low-level skills via reward function [7, 9, 42] and environment
design [43, 44]; however, to the best of our knowledge, no
prior work has explicitly studied whether LLMs can automate



various design aspects of the sim-to-real procedure. In this work,
we focus on the two important bottlenecks of reward design
and domain randomization and introduce a novel technique
that leverages LLMs’ capability as solution generators for
challenging optimization problems to automate sim-to-real
transfer design.

Domain Randomization. To bridge the gap in physical
dynamics between the real world and its simulation counter-
part, domain randomization (DR) perturbs simulation physics
parameters, such as friction and restitution, to improve the
transferability of policies trained in simulation [13–15]. The
most common DR approach is to uniformly sample simulation
parameters from a fixed distribution [10, 14, 15, 17, 29]. To
improve upon this simple randomization strategy, some works
propose to automatically adjust the randomization distribution
based on simulation training performance [27, 28, 45]. Beyond
feedback from simulation, some works have sought to use
small amount of real-world policy trajectories to iteratively
calibrate the randomization distributions in simulation to better
adapt to the real world [46–49]. Despite progress in DR
algorithms, the form (i.e., which parameters to randomize) and
the initial sampling distributions are typically manually chosen
by practitioners with domain expertise, and these design choices
have been shown to have large effect on the downstream policy
performance [8, 16]. Our work is the first to study whether
LLMs can automatically synthesize domain randomization
configurations.

Sim-to-Real Robot Learning. Beyond domain randomiza-
tion, sim-to-real robot learning has been extensively studied in
the literature with many complementary techniques, such as
system identification [11, 50, 51], domain adaptation [52–56],
transfer learning [12], and many others [13]. These approaches
differ from domain randomization in that they assume some
interaction data with the real-world environment to bridge the
sim-to-real gap. At the intersection of sim-to-real and LLMs,
prior works have demonstrated policies synthesized in LLM-
guided simulation training environments can transfer to the
real world [7, 42, 43, 57]. However, aspects of the training
pipelines pertaining to the sim-to-real transfer itself are still
manually designed in these prior works. To the best of our
knowledge, ours is the first work to investigate whether LLMs
themselves can be used to guide sim-to-real transfer, and in
particular, combining automated reward design and domain
randomization for highly agile skills.

III. PROBLEM SETTING

We formalize the sim-to-real design problem setting. In a
sim-to-real design instance, we assume a target real-world
environment and a simulation environment without a built-in
reward function or domain randomization configuration. The
goal of sim-to-real RL is to train a policy in the simulation
environment and then directly transfer it to the target real-world
environment without further training.

Mathematically, the simulation environment can be defined
as a Markov Process M = (S,A, T ), in which S is the
environment state space, A the action space, and T the

transition function. This assumption is easy to satisfy in practice,
e.g., by porting the URDF files of the robot and object models
into a simulator. For a task, we represent the true task objective
with F : Π → R, which maps a policy to a numerical value
that indicates its performance. A sim-to-real algorithm Algo
for reward design and domain randomization takes M and task
specification ltask as inputs, and outputs a reward function R
and a distribution over transition functions, T :

T , R← Algo(M, ltask) (1)

Then, a policy learning algorithm A outputs a policy

π ← A(M, T , R), (2)

which is evaluated in the unknown true MDP (i.e., the real
world environment) M∗

f∗ := FM∗(π) (3)

The goal of sim-to-real is to design P and R to maximize f∗:

max
T ,R

FM∗(A(M, T ,R)) (4)

Commonly, Algo is a human engineer who manually
designs T (i.e., domain randomization) and R (i.e., reward
engineering). Specifically, the simulator comes with a set of
physics parameters (e.g., mass and friction of objects) P whose
values can be set and sampled according to a distribution.
Domain randomization (DR) involves (1) selecting a set of
physics parameters {p} ⊆ P , and (2) selecting a randomization
range for each of the chosen parameters. On the other hand,
reward engineering tasks the human to write a dense reward
function code for task l, and typically involves a trial-and-error
procedure where the human observes policies trained using
the current reward function and tries new reward function
candidates [58–60].

In this work, we investigate whether LLMs, equipped with
their physical common sense priors and solution generation
capability, can guide and automate the sim-to-real design steps.
That is, Algo is a language model (LLM) that ingests task
specification ltask in natural language and M as a program,
which is satisfied in practice as simulation environments are
implemented in code. The LLM then outputs T and R as
strings, which are compiled into suitable programmatic formats
for downstream policy learning.

IV. METHOD

In this section, we introduce DrEureka, which uses LLMs
to automate two important bottlenecks in sim-to-real design:
reward design and domain randomization. At a high level,
DrEureka first uses the LLM to generate a reward function
that is both effective at the task and safe (Section IV-A &
IV-B), then uses the resulting simulation policy to construct a
prior distribution over randomizable parameters (Section IV-C),
and finally instructs the LLM to generate suitable domain
randomization configurations based on the prior (Section IV-D).



Algorithm 1 DrEureka Reward Design
1: Require: Task description ltask, safety instruction lsafety,

RL algorithm A, environment code M , coding LLM LLM, fitness
function F , initial prompt prompt

2: Hyperparameters: search iteration N , iteration batch size K
3: for N iterations do
4: // Sample reward functions from LLM
5: R1, ..., Rk ∼ LLM(ltask :: lsafety,M,prompt)
6: // Train policies in simulation
7: π1 = A(M,R1), ..., πk = A(M,Rk)
8: // Evaluate policies in simulation
9: s1 = F (π1), ..., sK = F (πk)

10: // Reward reflection
11: prompt := prompt :: Reflection(Rn

best, s
n
best),

where best = argmaxk s1, ..., sK
12: // Update best reward and policy
13: RDrEureka, πinitial, sDrEureka = (Rn

best, π
n
bests

n
best), if snbest >

sEureka
14: Output: RDrEureka, πinitial

A. Background: Eureka Reward Design

Our reward design component builds on Eureka [9] due to its
simplicity and expressivity but introduces several improvements
to enhance its applicability for sim-to-real settings. In Eureka,
the LLM first takes the task description ltask and a summary
of the environment state and action spaces (provided by
environment code M ) as input, and then samples several reward
functions as code. Each reward function candidate is evaluated
by training policies using reinforcement learning using that
reward, and computing task scores F for these policies. These
scores as well as other training statistics (e.g., values of the
reward components during training) are provided as feedback
to the LLM to iteratively evolve better reward functions that
maximize F . The final output of Eureka is the best reward and
policy pair

REureka, πEureka := Eureka(M, ltask) (5)

B. Safety Instruction

In Eureka, an implicit assumption is that the target environ-
ment M∗ is the training simulation environment M . This is un-
desirable in the sim-to-real setting because a higher simulation
score can often be achieved by over-exerting the robot motors or
learning unnatural behavior, which consequently encourages the
LLM reward candidate sampler to favor reward functions that
do not include safety terms (e.g., torque magnitude penalty).
To mitigate this problem, one approach is post-hoc adding
safety terms to REureka. But this approach requires manually
defining the safety terms and also fails to consider how the
safety terms interact with other task-relevant components in
REureka. If the scale of the safety term dominates other terms,
this approach may inadvertently induce degenerate behavior
that is overly conservative [61].

Instead, we propose to directly exploit the strong instruction-
following capability of instruction-tuned LLMs [62] and prompt
the LLM to explicitly consider including safety terms for
stability, smoothness, and desirable task-specific attributes as a

part of the language specification l:

RDrEureka, πinitial := Eureka(M, ltask + lsafety) (6)

We hypothesize that this allows the LLM to naturally balance
the weighting and potentially non-additive interactions of all
reward components, thereby enabling better real-world transfer.
See Algorithm 1 for pseudocode.

C. Reward-Aware Physics Prior

A safe reward function can regularize the policy behavior
fixing a choice of environment, but is not in itself sufficient for
sim-to-real transfer. Given RDrEureka and πinitial, how should we
prompt the LLM to generate effective domain randomization
configurations? This is a challenging problem because we do
not have access to the real-world environment M∗ at training
time. However, we do have access to M , which comes with
default values for simulation physics parameters. Even so, the
default values themselves are not sufficient as guidance for the
LLM because they reveal no information about the parameter
scales and base ranges from which to sample. Simulation
physical parameters often have built-in ranges (i.e., max and
min values), but we hypothesize that these ranges are too wide
and may significantly hamper policy learning [10, 16].

We introduce a simple reward aware physics prior (RAPP)
mechanism to restrict the base ranges for the LLM. At a
high level, RAPP seeks for the maximally diverse range of
environment parameters that πinitial is still performant. Our
insight is that domain randomization should be dependent
on the task reward function and customized to the policy
behavior learned without domain randomization. For instance,
randomizing frictions over too wide of a range is likely
to sample friction values that are infeasible to learn given
the reward function. In practice, RAPP computes, for each
domain randomization parameter, a lower and upper bound of
values that are “feasible” for training. For each parameter, we
search through a general range of potential values at varying
magnitudes, and with each value, we set it in simulation
(keeping all other parameters at default) and roll out πEureka in
this modified simulation. If the policy’s performance satisfies
a pre-defined success criterion, we deem this value as feasible
for this parameter. Given the set of all feasible values for each
parameter, our lower and upper bounds for a parameter are the
minimum and maximum feasible values. It is computationally
light since it requires only evaluating the policies under different
physics parameters and can be efficiently done in parallel.



Algorithm 2 Reward Aware Physics Prior (RAPP)
1: Require: Reinforcement learning policy πinitial, simulator S,

success criteria F , domain randomization parameters P and
their respective search values R,

2: for randomization parameter p ∈ P do
3: // Initialize output range to extremes
4: l = inf, h = − inf
5: for search value r ∈ R do
6: // Change one randomization parameter

while leaving others at default value
7: S.p = r
8: // Evaluate policy in simulation,

record trajectory τ
9: τ = S(πinitial)

10: // Evaluate success criteria, update
range if successful

11: if F (τ) then
12: l = min(l, r)
13: h = max(h, r)
14: Output: l, h for each p ∈ P

D. LLM for Domain Randomization

Given the RAPP ranges for each DR parameter, the final
step of DrEureka instructs the LLM to generate domain
randomization configurations within the limits of the RAPP
ranges. Compare this to automatic domain randomization [27,
28]: they too search for parameter ranges where the policy
performs well, but they directly set the DR parameters to this
range. Instead, we use it as a guide for LLM. Our experiments
show that this performs better as the base range can be too
wide and hampers policy learning. Concretely, we provide all
randomizable parameters P and their RAPP ranges in the LLM
context and ask the LLM (1) to choose a subset of {p} ⊆ P
to randomize and (2) determine their randomization ranges.
See Figure 3 for the actual domain randomization prompt
DrEureka uses in our main experiments. In this manner, the
backbone LLM zero-shot generates several independent DR
configuration samples, T1, ..., Tm. Finally, we use RL to train
policies for each reward and DR combination, resulting in a
set of policies where

πfinal,i = A(M, Ti, RDrEureka), i = 1, ...m (7)

Unlike the reward design component, it is difficult to select
the best DR configuration and policy in simulation because
each policy is trained on its own DR distribution and cannot be
easily compared. Hence, we keep all m policies and report both
the best and the average performance in the real world. Finally,
note that some prior works prescribe continuing to tune the
DR configuration to adapt to improving policy capabilities over
the course of training [27, 28, 45, 47]; we find in practice that
the initial DR configurations generated by DrEureka suffice
for sim-to-real transfer in our setups without intra-training
adaptation.

1In both Without Prior and Uninformative Prior experiments, 15 out of the
16 policies resulted in jerky and dangerous behavior, many times immediately
triggering the controller’s motor power protection fault. We count these trials
as 0m/s, 0m traveled.

Fig. 3: DrEureka prompt for generating domain randomization
parameters. The blue paragraph describes the instruction, and the
green paragraph is the reward aware parameter prior computed in
Algorithm 2.

V. EXPERIMENTAL SETUP

Robots and Tasks. We adopt commercially available,
low-cost robots with well-supported open-sourced simulators
as our evaluation platforms. For our main experiments on
quadrupedal locomotion, we use Unitree Go1. The Go1 is a
small quadrupedal robot with 12 degrees of freedom across four
legs. Its observations include joint positions, joint velocities,
and a gravity vector in the robot’s local frame, as well as a
history of past observations and actions. We use the simulation
environment as well as the real-world controller from Margolis
et al. [25]. The task of forward locomotion is to walk forward
at 2 meters-per-second on flat terrains; while it is possible for
the robot to walk forward at a higher speed, we find 2 m/s to
strike a good balance between task difficulty and safety as our
goal is not to achieve the highest speed possible on the robot.
In the real world, we set up a 5-meter track in the lab (see
Figure 4) and measure the forward projected velocity and total
meters traveled in the track direction.

In addition to locomotion, we validate DrEureka’s applica-
bility to a second task category of dexterous manipulation.
Here, we use the LEAP hand [30], which is a low-cost
anthropomorphic robot hand, featuring 16 degrees of freedom
distributed among three fingers and a thumb. The task involves
rotating a cube in-hand as many times as possible within a 20-
second interval. This task is challenging because the policy only
receives 16 joint angles and proprioceptive history, encoded
via GRU [63], as observation and does not have access to the
position and the pose of the cube. The policy then outputs
target joint angles as position commands to the motors.

Both robots cost less than 10K USD and admit simulators
in NVIDIA Isaac Gym [64] with sim-to-real training code that



has been tested in the real world.
Methods. DrEureka uses GPT-4 [65] as the backbone

LLM, and we use the original Eureka hyperparameters for
reward generation before sampling 16 DR configurations.
To understand the best and the average performance of
DrEureka, we train policies for all 16 configurations and
evaluate all policies in the real world. We primarily compare
to the human-designed reward function and DR configuration
from the original task implementations [25, 30] as reference;
We refer to this baseline as Human-Designed. Note that this
baseline for forward locomotion trains a velocity-conditioned
policy and utilizes a reward function with a velocity curriculum
that gradually increases as policy training progresses. For our
comparison, we train on the whole curriculum but evaluate the
policy at 2 m/s. We emphasize that the purpose of comparing to
Human-Designed is to determine whether DrEureka can
be useful – i.e., enabling sim-to-real transfer on a representative
robot task for which robotics researchers have devoted time
to designing effective sim-to-real pipelines. The absolute
performance ordering is of less importance as LLMs and
humans arrive at their respective sim-to-real configurations
using vastly different computational and cognitive mechanisms.

To verify that a policy outputted by a reward-design
algorithm itself is not effective for real-world deployment,
we also compare against Eureka [9], which designs rewards
using LLMs without safety consideration and trains policies
without domain randomization. Additionally, we consider two
classes of ablations that probe (1) whether some fixed DR
configuration can generally outperform DrEureka samples,
and (2) the importance of DrEureka’s reward-aware priors
(Section IV-C) and LLM sampling (Section IV-D). In the first
class, we first compare to an ablation that does not train
with domain randomization (No DR). Second, we consider a
baseline that trains with the human-designed DR (Human-
Designed DR) in the original implementation. Third, we
consider a baseline that directly uses the full ranges of the
RAPP parameter priors as the DR configuration (Prompt DR);
this ablation can be viewed as applying domain randomization
algorithms [27, 28, 45] that seek to prescribe the maximally
diverse parameter ranges where the policy performs well as the
configurations. In the second category of ablations, we consider
an ablation that only has access to the set of physics parameters
but without the reward-aware priors (No Prior). Additionally,
we consider an ablation that has only the default search range
for RAPP as the parameter priors (Uninformative Prior).
Finally, we consider a baseline that randomly samples from the
RAPP ranges (Random Sampling); this baseline helps show
whether LLM-based sampling is a better hypothesis generator.
In all ablations, we fix the DrEureka reward function for the
task and only modify the DR configurations.

Finally, we compare DrEureka’s DR-generation with prior
methods based on Cross Entropy Method (CEM) [16, 66, 67]
and Bayesian Optimization (BayRn) [49, 68], which optimize
DR parameters by repeatedly training and evaluating policies
in real. Note that while CEM and BayRn tackle the same
problem, their iterative procedure is conceptually different

Sim-to-real Configuration Forward Velocity (m/s) Meters Traveled (m)

Human-Designed [25] 1.32 ± 0.44 4.17 ± 1.57
Eureka [9] 0.0 ± 0.00 0.00 ± 0.00
Our Method (Best) 1.83 ± 0.07 5.00 ± 0.00
Our Method (Average) 1.66 ± 0.25 4.64 ± 0.78

Ablations for Our Method

Without DR 1.21 ± 0.39 4.17 ± 1.04
With Human-Designed DR 1.35 ± 0.16 4.83 ± 0.29
With Prompt DR 1.43 ± 0.45 4.33 ± 0.58
Without Prior 0.09 ± 0.361 0.31 ± 1.25
With Uninformative Prior 0.08 ± 0.331 0.28 ± 1.13
With Random Sampling 0.98 ± 0.45 2.81 ± 1.80

DR Generation Baselines

CEM Random 0.00 ± 0.00 0.00 ± 0.00
CEM RAPP 1.46 ± 0.12 5.00 ± 0.00
BayRn RAPP 1.28 ± 0.62 4.00 ± 1.73

TABLE I: Main comparison against baselines and ablations
for forward locomotion. DrEureka’s average and best policies
outperform Human-Designed and a prior reward-design baseline.
Ablations of the DR formulation in DrEureka and alternative
baselines all result in decreased performance.

from DrEureka, which trains all policies in parallel; thus, this
comparison favors the baselines because they use additional
information from intermediate real-world evaluations. First,
we consider CEM initialized with mean at simulation default
values and variance 1 (CEM Random), following [16]. Second,
we consider CEM initialized by randomly sampling within
the RAPP bounds, (CEM RAPP), which provides a stronger
prior. Third, we consider BayRn with parameters bounded
by RAPP and initial samples randomly drawn from RAPP
(BayRn RAPP). Additional details are in the Appendix.

Policy Training and Evaluation. We train all policies
entirely in the simulation environment and use policy training
code framework provided by Margolis et al. [25] for forward
locomotion and Shaw et al. [30] for cube rotation. For both
tasks, the reinforcement learning algorithm is Proximal Policy
Optimization (PPO) [69]. Forward locomotion specifically
uses a teacher-student variant of PPO in which the teacher
policy receives privileged state information in simulation
to supervise a student policy that uses sensors available in
the real world. Adopting the evaluation protocol from Ma
et al. [9], we use the original policy training hyperparameters
for all policy training and do not modify or tune them for
DrEureka’s configurations. Therefore, the differences in
performance between DrEureka and Human-Designed
can be attributed to the different DR parameters as well
as reward functions DrEureka produces. For every DR
configuration, we train policies using 3 random seeds and
report average as well as standard deviation across trials and
seeds. Video results are included on our project website.

VI. RESULTS AND ANALYSIS

Our experiments are designed to answer the following:

1) Can DrEureka be competitive with manual, pre-existing
Sim2Real pipeline on known tasks?

2) How important is each component of DrEureka?



Sim-to-real Configuration Rotation (rad) Time-to-Fall (s)

Human-Designed [25] 3.24 ± 1.66 20.00 ± 0.00
Our Method (Best) 9.39 ± 4.15 20.00 ± 0.00
Our Method (Average) 4.67 ± 3.55 16.29 ± 6.28

TABLE II: Comparison against Human-Designed for cube
rotation. Both the average and the best policies of DrEureka surpass
Human Designed in terms of total rotation.

3) Can DrEureka help solve challenging new tasks for
which no prior sim-to-real pipeline exists?

A. Comparison to Pre-Existing Sim-to-Real Configurations

We first directly compare DrEureka to
Human-Designed to assess whether DrEureka is
capable of providing sim-to-real training configurations
comparable to human-designed ones. For forward locomotion,
as shown in Table I, DrEureka is able to outperform
Human-Designed in terms of both forward velocity as
well as distance traveled on the track. The performance of
DrEureka is robust across its different DR sample outputs;
the average performance does not lag too far behind the best
DrEureka configuration and still performs on par with or
slightly better than Human-Designed. In contrast, the plain
Eureka policy fails to walk in the real world (more analysis
in Section VI-B), validating that a reward design algorithm
suitable for simulation is not sufficient for sim-to-real transfer.

Similarly, for cube rotation, we see in Table II that
DrEureka outperforms Human-Designed in terms of
rotation while maintaining a competitive time-to-fall duration.
We note that this task permits very little room for error; thus,
policies generally perform very well or very badly, which
is reflected in the relatively larger standard deviation across
DrEureka’s policies. Nevertheless, the best policy from
DrEureka significantly outperforms the baseline by nearly
three times the rotation without dropping the cube. These results
highlight the effectiveness and versatility of our approach across
diverse robotic platforms.

Real-world robustness. One main appeal of domain ran-
domization is the robustness of the learned policies to real-
world environment perturbations. To probe whether DrEureka
policies exhibit this capability, we test DrEureka (Best) and
Human-Designed on several additional testing environments
for forward locomotion (Figure 4). Within the lab environment,
we consider an artificial grass turf as well as putting socks on
the quadruped legs. For an outdoor environment, we test on an
empty pedestrian sidewalk; the results are shown in Figure 5.
We see that across different testing conditions, DrEureka
remains performant and consistently matches or outperforms
Human-Designed. This validates that DrEureka is capable
of producing robust policies in the real world.

Having validated that DrEureka can be as effective as
human-crafted sim-to-real designs in real-world scenarios,
we provide further analysis and perform ablations on the
quadrupedal locomotion task to better understand the sources
of its effectiveness.

Fig. 4: The default real-world environment as well as additional envi-
ronments to test DrEureka’s robustness for quadrupedal locomotion.
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Fig. 5: Real-world robustness evaluation. DrEureka performs
consistently across different terrains and maintains advantages over
Human-Designed.

B. Does DrEureka generate better sim-to-real rewards?

In this section, we compare DrEureka’s reward against
baselines and ablations to conclude that DrEureka reward
is at once effective, safe, and novel; DrEureka’s reward
expression is captured in Table III.
DrEureka does not need a reward curriculum.

To study the effectiveness of the reward functions in
isolation, we fix the domain randomization configura-
tions to be Human-Designed for both DrEureka and
Human-Designed reward functions and re-train several poli-
cies in simulation. Since Human-Designed reward utilizes
a velocity curriculum, we also evaluate an ablation of the
Human-Designed reward function that has a fixed velocity
target (i.e., 2.0 m/s) to put it on an equal footing with the Eureka
reward function as a standalone reward function. The training
curves are shown in Figure 7. As shown, DrEureka reward



Term Symbol

Velocity exp{−(|vx − vtx|)}
Height exp{−5.0 · |pz − ptz |}
Orientation exp{−5.0 · ∥g − gt∥2}
DOF violations 1.0− 1[j < jl ∪ j > jh]
Action smoothness exp{−0.1 · ∥at − at−1∥2}

DrEureka reward velocity ·height · orientation
·DOF violations · action smoothness

TABLE III: DrEureka reward function for quadruped locomotion.
vtx is the desired velocity, ptz is the desired height (set to standing
height), g is the projected gravity direction and gt is a unit vector
in −z, j is joint positions, jl and jh are low and high joint limits,
and at and at−1 are the current and previous actions. The cumulative
reward is a product of the terms above.

Safety Instruction Velocity (Sim) Velocity (Real)

Yes (DrEureka w.o DR) 1.70 ± 0.11 1.21 ± 0.39
No (Eureka) 1.83 ± 0.05 0.0 ± 0.0

TABLE IV: DrEureka safety instruction ablation. Omitting the
safety instruction from DrEureka results in policies that run quickly
in simulation but fail in the real world.

enables more sample-efficient training and reaches higher
asymptotic performance. In contrast, the Human-Designed
reward crucially depends on the explicit curriculum to work
comparably; as a stand-alone reward function without curricu-
lum inputs, Human-Designed makes little progress.

Safety instruction enables safe reward functions. In
addition to comparing against human-written reward functions,
we also ablate DrEureka’s own reward design procedure.
In particular, to verify that DrEureka’s safety instruction
yields more deployable reward functions, we compare to an
ablation of DrEureka that does not include custom safety
suggestions in the prompt; see Appendix for the functional

Fig. 6: DrEureka with safety instruction successfully learns trans-
ferrable gait from simulation in real. In contrast, removing the safety
instruction leads to behavior that exploits the simulation and quickly
fails in the real world.

form of this reward function. Note that this ablation is identical
to the original Eureka algorithm in Table I, and we compare it
to the DrEureka (No DR) variant to eliminate the influence
of domain randomization in policy performance. As shown in
Table IV, removing the safety prompt results in a final reward
function that can move faster in simulation than DrEureka.
However, the robot acquires an unnatural gait with three of
its feet and the hip dragging on the ground. Consequently,
in the real world, this behavior does not transfer, and the
policy directly face-plants at the starting line; this is not
surprising as the Eureka reward function contains just a generic
action smoothing term for safety, which in itself does not
prohibit awkward behaviors. Qualitative snapshots are included
in Figure 6 and see our project website for a video comparison.

We also qualitatively compare the number of reward func-
tions in DrEureka versus Eureka that contain explicit safety
reward components; they broadly encapsulate terms such
as action smoothing, torque penalty, torso orientation, and
other components that specify behavior not directly related
to forward motion. For this comparison, we count within the
first iteration of reward samples in the respective approach as
reward samples from later iterations are evolved from the earlier
ones. While only 37.5% of reward functions in Eureka’s first
iteration contain safety terms, 100% of DrEureka’s do. This
comparison is interesting, given that both algorithms implement
an evolutionary algorithm for reward search. Intermediate
reward functions with safety terms that successfully encourage
stable and deployable gaits are not favored by the evolutionary
search because they tend to induce behavior with slower
velocity. As such, while it is possible for Eureka to generate
reward functions that contain safety terms and result in safe
policies, the evolutionary process will gradually eliminate
them and amplify unsafe but fast reward functions when
safety consideration is not explicitly enforced via instruction-
following. This result highlights how the instruction-following
capability of state-of-the-art LLMs can be effectively leveraged
and is, in fact, crucial for safe reward design and policy
learning.
DrEureka reward qualitatively differs. Finally, given

these encouraging results, we qualitatively analyze the
DrEureka reward function RDrEureka (i.e., the best reward
function from the reward design stage). The mathematical ex-
pression is shown in Table III, and the raw programmatic output
from the LLM is reproduced in the Appendix. We observe that
this reward function is multiplicative of its components, a clear
deviation from established reward functions for quadrupedal
locomotion tasks that bear additive rewards [17, 23–26]. The
multiplicative nature of DrEureka reward also introduces an
interesting effect from the DOF Violations term, which is
a binary function that indicates whether any robot joint exceeds
the joint limit. Namely, if any joint violation occurs, then the
entire reward for that time step is 0. Intuitively, this reward
function encourages the policy to always learn within the space
of safe behavior, as any violation is heavily penalized. While
prior reward functions on locomotion tasks have considered
a binary penalty term on joint limit violation [25], they often
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Fig. 7: Comparison between DrEureka and Human-Designed
reward functions on the simulation locomotion task. DrEureka
has higher sample efficiency and asymptotic performance, while
Human-Designed relies on a velocity curriculum to perform well.
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Fig. 8: Ablations for different domain randomization priors. Replacing
RAPP with other choices makes the LLM generate configurations
that are difficult to train in simulation.

incorporate it as an additive penalty, which may not have a
large effect on the behavior due to weight scaling. In summary,
DrEureka reward can be simple, eccentric, yet effective.

C. Does DrEureka generate effective DR configurations?

DrEureka surpasses DR optimization baselines. In Table
I, we see that BayRn RAPP and CEM RAPP produce worse
final policies and are less sample efficient than DrEureka;
this is despite the fact that several random initial samples from
the RAPP range used to seed BayRn and CEM are competent.
CEM Random performs worse as well since it has no access
to the RAPP bounds, causing its variance of 1 to overshoot
some parameters while undershooting others. These results
show that LLM-generated DR can outperform prior feedback-
based approaches. Moreover, since these baselines are iterative,
DrEureka incurs a significantly shorter wall-clock runtime of
3 hours, compared to 10 and 20 for CEM and BayRn. Finally,
we note that DrEureka avoids testing intermediate real-world
policies that can be unsafe, especially for novel tasks like our
globe walking task for which no performant controllers are
known to exist.
DrEureka uses physical reasoning to construct DR

ranges. DrEureka takes advantage of the LLM’s physical
reasoning capabilities, which serve as a strong prior on DR

ranges that are reasonable and intuitive. In the Appendix,
we provide an example of the LLM output along with its
explanations. We see that the LLM chooses the lower half of
the RAPP restitution range, reasoning that "restitution affects
how the robot bounces off surfaces... lower range as we’re
not focusing on bouncing." For gravity, it chooses a relatively
small range for "small tweaks to represent minor slopes or
variations the robot might need to adapt to." Thus, DrEureka
proposes more reasonable DR configurations than CEM and
BayRn, which treat DR as a numerical black-box optimization
problem and relies on noisy real-world feedback for improving
DR parameter proposal.
DrEureka outperforms all DR ablations. The real-world

evaluation of these ablations is included in Table I. We first
analyze the group of ablations that fix a single choice of DR con-
figuration or lack thereof. We see that our tasks clearly demand
domain randomization as No DR is inferior to both DrEureka
and Human-Designed. However, finding a suitable DR is not
trivial. Prompt DR suggests wide parameter ranges (especially
over friction as seen in Figure 3) that forces the robot to
over-exert forces; this result is validated in Figure 10 where
we visualize the histogram of hip torque readings from real-
world deployment of DrEureka policies versus Prompt DR
policies. On the other hand, using Human-Designed DR does
not match the performance of DrEureka, illustrating the
importance of reward-aware domain randomization. Onto the
sampling-based baselines, the subpar performance of Random
Sampling suggests the effectiveness of LLMs as hypothesis
generators, consistent with prior works that have found LLMs
to be effective for suggesting initial samples for optimization
problems [9, 19–22]. However, fully utilizing LLM’s zero-shot
generation capability requires proper grounding of the sampling
space. No Prior and Uninformative Prior, despite using a
LLM as sampler, performs very poorly and often results in
policies that trigger safety protection power cutoff in the real
world. One common concern for LLM-based solutions is data
leakage, in which the LLM has seen the problems and solutions
for an evaluation task. In our setting, if the LLM has seen the
simulations tasks and consequently the human-designed
ranges in the open-sourced code base, then even if the priors
are withheld in the context, it should be possible to output
reasonable ranges out of the box. Fortunately, the negative
results of No Prior confirm that data leakage does not appear in
our evaluation. Altogether, these results affirm that both reward-
aware parameter priors and LLM as a hypothesis generator in
the DrEureka framework are necessary for the best real-world
performance.

Sampling from DrEureka priors enables stable simu-
lation training. Finally, to better understand the drastically
different performances of different DrEureka prior choices
in the real world, we present the simulation training curves
in Figure 8. Note that the performances are not directly
comparable as each method is trained and evaluated on its
own DR distributions. Nevertheless, we observe the stable
training progress of DrEureka. In contrast, despite using a
LLM, the ablations synthesize poor DR ranges, resulting in



Fig. 9: Walking Globe sim and real environments. In lab settings, we loosely strap the robot horizontally to a center point to prevent robot
from falling. For outdoor tests, we evaluate the policy across various terrains, including sidewalks, roads, grass, and wooden bridges.

Fig. 10: Policies trained on DrEureka DR configurations exert less
torque in the real world.

difficult policy training dynamics.

D. The Walking Globe Trick

Our experiments above have focused on a thorough validation
of DrEureka on existing tasks, where a state-of-the-art sim-
to-real approach was readily available as a reference point.
Having validated DrEureka’s ability to automate sim-to-real
to comparable performance levels with human design, we
now employ DrEureka for a challenging new task. In circus
performances, the walking globe trick involves a performer
balancing atop a large sphere. Inspired by this, we train our
quadruped to walk on an inflated yoga ball. Note that the
deformable and bouncy nature of the yoga ball complicates
this task as IsaacGym simulation does not permit faithfully
modeling the resulting complex dynamics of quadruped motion
on the ball. See Figure 9 for visualizations of the simulation and
the real world environment. This is a novel and arguably more
difficult task than most solved quadrupedal tasks. Naturally,
there is no pre-existing sim-to-real reward function or domain
randomization configuration, making this task an ideal test-
bed for testing DrEureka’s ability accelerate the robot skill
discovery process.

Walking Globe Time on ball (s)

Simulation 10.7 ± 5.20
Real (Lab setting with center point support) 15.4 ± 4.17

TABLE V: DrEureka results on walking globe. In both simulation
and the real world, the DrEureka policy can balance and walk on
the yoga ball for longer than 10 seconds.

The simulation environment is adapted from Ji et al. [70],
which simulates the Go1 playing with a small soccer ball. The
robot and the ball are allowed to move around a large plane
in simulation, but in the lab setting for safety, we limit the
robot’s movement by strapping it to a center support point
in the room; due to the lack of existing options, we use a
human as the center point (see left of Figure 9). The ball is
free to move within a radius of 1 meter around this point. We
perform DrEureka using the same hyperparameters as in the
locomotion task and report policy performance in Table V; we
include the DrEureka reward function and DR configurations
for this task in Appendix. We observe the quadruped staying
on the ball for an average of 15.43 seconds in the real world,
many times making recovery actions to stabilize the ball and
readjust its pose. In simulation, since the policy experiences a
wide range of randomization parameters and perturbations, its
average episode length is 10.72 seconds.

Furthermore, given that the lab environment has limited
floor space, we also deploy our policy on diverse, uncontrolled
outdoor real-world scenes to further test the policy’s robustness.
With appropriate controls that limits the speed of the robot, the
policy operated effectively for over four minutes under various
conditions. Notably, the robot demonstrated stable navigation
on grass, adeptly handled transitions over height obstacles, and
moved smoothly onto sidewalks and wooden bridges. We also
tested the policy’s robustness by introducing perturbations such
as kicking the yoga ball and operating the policy as the ball
was deflating. In all scenarios, the policy successfully managed
these challenges, showcasing its adaptability and robustness



across diverse operational conditions. See project website for
videos.

In summary, DrEureka’s adeptness at tackling the novel
and complex task of quadrupedal globe walking showcases
its capacity to push the boundaries of what is achievable in
robotic control tasks. This feat, achieved without prior specific
sim-to-real pipelines, highlights DrEureka’s potential as a
versatile tool in accelerating the development and deployment
of robust robotic policies in the real world.

VII. CONCLUSION

We have presented DrEureka, a novel technique for using
large language models to guide sim-to-real reinforcement
learning. Without human supervision, DrEureka can au-
tomatically generate effective reward functions and domain
randomization configurations comparable to human-crafted
ones. DrEureka is validated on quadrupedal locomotion
and dexterous manipulation, and we have shown its potential
in solving novel challenging tasks such as quadruped globe
walking. We believe that DrEureka demonstrates the potential
of accelerating robot learning research by using foundation
models to automate the difficult design aspects of low-level
skill learning.

VIII. LIMITATIONS

While DrEureka demonstrates the potential of leveraging
Large Language Models (LLMs) for automating the sim-to-
real transfer process in robotics, there are several areas of
improvement to the current implementation:

• Static domain randomization parameters: In the current
framework, the domain randomization (DR) parameters,
once generated, remain fixed during policy training.
Dynamic adjustment of DR parameters based on policy
performance or real-world feedback could further improve
the sim-to-real transferability.

• Lack of policy selection mechanism: The evaluation
of DrEureka primarily focuses on the effectiveness of
the generated reward functions and DR configurations.
However, a systematic approach for selecting the most
promising policies out of the generated candidates for
real-world deployment is not explored. Integrating a
mechanism that predicts real-world efficacy based on sim-
ulation performance or other heuristics could streamline
the process of identifying the best policies for deployment.
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APPENDIX

A. Full Prompts and Success Criteria

In this section, we provide DrEureka prompts used for experiments and ablations. We also include the success criteria
used to select reward candidates.

A1. Reward Generation Prompts

This section contains the system and task prompts for generating reward functions for forward locomotion and globe walking
tasks using DrEureka.�
You are a reward engineer trying to write reward functions to solve reinforcement learning tasks as effective as possible.
Your goal is to write a reward function for the environment that will help the agent learn the task described in text.
Your reward function should use useful variables from the environment as inputs. As an example,
the reward function signature can be: {task_reward_signature_string}
Make sure any new tensor or variable you introduce is on the same device as the input tensors.� �

Prompt 1: DrEureka system prompt for reward generation.�
To make the go1 quadruped run forward with a velocity of exactly 2.0 m/s in the positive x direction of the global

coordinate frame. The policy will be trained in simulation and deployed in the real world, so the policy should be as
steady and stable as possible with minimal action rate. Specifically, as it’s running, the torso should remain near a
z position of 0.34, and the orientation should be perpendicular to gravity. Also, the legs should move smoothly and
avoid the DOF limits.� �

Prompt 2: DrEureka forward locomotion task prompt for reward generation. The safety instructions encouraging a steady torso and smooth
movement result in natural gaits.�
To make the robot hand rotate the cube in hand with positive angular velocity around the z-axis as many times as possible.

We want the cube to remain in the palm with near-zero linear velocity, and it should not fall out of the hand. The
policy will be trained in simulation and deployed in the real world, so the policy should be smooth and steady, and
the fingers should be penalized for deviating far from their initial position. For safety, we would like the cube to
rotate at around 0.25 radians per second; however, it’s okay if it rotates faster.� �

Prompt 3: DrEureka cube rotation task prompt for reward generation. Note that we limit the encouraged rotation speed to 0.25 rad/s due to
simulation inaccuracies causing extreme angular velocity measurements; while the policy is not explicitly rewarded for rotating faster than
this, we find that faster rotation is implicitly rewarded by greater stability and consistency.�
To make the go1 quadruped balance on the top of the ball. The quadruped should maintain a z-position of 2 * ball_radius or

higher. Please keep in mind that the policy learned using your reward terms will be deployed on a robot in the real
world. As such, you should prioritize safety, robustness, and feasibility over performance. Please generate reward
terms that penalize actions that are unsafe or infeasible. Please also penalize jittery or fast actions that may burn
out the motors. Also, remember to keep the scaling of your regularization terms small. If you choose to use env.
torques, please keep in mind that this value will be large, so your scaling for this term should be near 0.00001.� �

Prompt 4: DrEureka globe walking task prompt for reward generation. In our safety instruction, we provide a numerical value to ground
torque scaling because env.torques in the code is the output of a black-box model rather than mathematically calculated.

A2. Reward Generation Ablation Prompts

This section contains prompts used in ablation studies, specifically for generating reward functions without safety instructions
to assess the impact of such instructions on the generated rewards.�
The Python environment is {environment source code}. Write a reward function for the following task: To make the go1

quadruped run forward with a velocity of exactly 2.0 m/s in the positive x direction of the global coordinate frame.� �
Prompt 5: DrEureka forward locomotion task prompt for reward generation, without safety instructions.

A3. Domain Randomization Generation Prompts

This section includes the initial system and user prompts for generating domain randomization configurations, demonstrating
how DrEureka is applied to different tasks for robust policy training.�
You are a reinforcement learning engineer. Your goal is to design a set of domain randomization parameters for the given

task to facilitate successful deployment of the trained policy in the real world.
To do so, you will be given valid parameters as well as a range for each parameter that indicates the maximum and minimum

values that parameter can take. Please note that your randomization ranges do not need to cover most of the range.
Also, you should keep in mind that the more you randomize, the more difficult it will be for the policy to learn the task

within our fixed compute budget. A good policy should be trained only on randomization ranges that will help it adapt
to the real world.

You should first reason over each parameter and determine if it’s useful for domain randomization.
Then, you should output a range of values for each parameter that you think will be useful for the task in a real-world

deployment. Please explain your reasoning for each parameter.



Output your response in the form of Python code that sets the parameters as variables, e.g.:
‘‘‘
friction_range = [0.0, 1.0]
‘‘‘
Please make your variable names match the parameter names provided. Each variable should be assigned a range formatted as

a Python list with two elements. Write everything else as Python comments.� �
Prompt 6: DrEureka system prompt for DR generation.

�
The task is to train a quadruped robot to run on a variety of terrains indoor and outdoor. The goal of the robot is to run

forward at 2.0 m/s while remaining steady and safe in the real world.
The robot will be trained in simulation and then deployed in the real world.
Our parameters and valid ranges are the following:

friction_range = [0.0, 10.0]
restitution_range = [0.0, 1.0]
added_mass_range = [-5.0, 5.0]
com_displacement_range = [-0.1, 0.1]
motor_strength_range = [0.5, 2.0]
Kp_factor_range = [0.5, 2.0]
Kd_factor_range = [0.5, 2.0]
dof_stiffness_range = [0.0, 1.0]
dof_damping_range = [0.0, 0.5]
dof_friction_range = [0.0, 0.01]
dof_armature_range = [0.0, 0.01] (This is the range of values added onto the diagonal of the joint inertia matrix.)
push_vel_xy_range = [0.0, 1.0] (This is the range of magnitudes of a vector added onto the robot’s xy velocity.)
gravity_range = [-1.0, 1.0] (This is the range of values added onto each dimension of [0.0, 0.0, -9.8].

For example, [0.0, 0.0] would keep gravity constant.)� �
Prompt 7: DrEureka quadruped prompt with RAPP from DrEureka policy. This prompt corresponds to the ’Our Method’ configuration
in Table I.

�
The task is to train a robot hand to rotate the cube in hand. The goal of the robot is to rotate the cube with positive

angular velocity around the z-axis as many times as possible while remaining steady and safe in the real world.
The robot will be trained in simulation and then deployed in the real world.
Our parameters and valid ranges are the following:

HandFriction = [0.0, 10.0]
HandRestitution = [0.0, 1.0]
HandDOFStiffness = [1.0, 10.0]
HandDOFDamping = [0.0, 0.5]
HandDOFFriction = [0.0, 0.1]
HandDOFArmature = [0.0, 0.01]
ObjectMass = [0.01, 1.0] # For reference, we measured the real cube to be 0.046 kg
ObjectCOM = [-0.01, 0.01]
ObjectFriction = [0.0, 10.0]
ObjectRestitution = [0.0, 1.0]� �

Prompt 8: DrEureka cube rotation prompt with RAPP from DrEureka policy. This prompt corresponds to the ’Our Method’ configuration
in Table II.

�
The task is to train a quadruped robot to balance on a yoga ball for as long as possible.
The robot will be trained in simulation and then deployed in the real world. Please note that our simulation environment

models the ball as a solid rigid object, so the robot will not be able to deform the ball in any way. However, our
real yoga ball is hollow, bouncy, and deformable, so the robot will need to adapt to this difference. Please keep this
in mind when designing your domain randomization.

Our parameters and valid ranges are the following:
robot_friction_range = [0.1, 1.0]
robot_restitution_range = [0.0, 1.0]
robot_payload_mass_range = [-1.0, 5.0]
robot_com_displacement_range = [-0.1, 0.1]
robot_motor_strength_range = [0.9, 1.1]
robot_motor_offset_range = [-0.01, 0.1]
ball_mass_range = [0.5, 5.0]
ball_friction_range = [0.1, 3.0]
ball_restitution_range = [0.0, 1.0]
ball_drag_range = [0.0, 1.0]
terrain_ground_friction_range = [0.0, 1.0]
terrain_ground_restitution_range = [0.0, 1.0]
terrain_tile_roughness_range = [0.0, 0.1]
robot_push_vel_range = [0.0, 0.5]
ball_push_vel_range = [0.0, 0.5]
gravity_range = [-0.5, 0.5]� �

Prompt 9: DrEureka globe walking prompt with RAPP from DrEureka policy.



A4. Domain Randomization Generation Ablation Prompts

This section includes prompts used in ablation experiments that test the importance of RAPP priors in the LLM prompt.
Below, we include a prompt with no prior context and a prompt whose context is the entire range tested by the RAPP algorithm.�
The task is to train a quadruped robot to run on a variety of terrains indoor and outdoor. The goal of the robot is to run

forward at 2.0 m/s while remaining steady and safe in the real world.
The robot will be trained in simulation and then deployed in the real world.
Our parameters are the following:

friction_range
restitution_range
added_mass_range
com_displacement_range
motor_strength_range
Kp_factor_range
Kd_factor_range
dof_stiffness_range
dof_damping_range
dof_friction_range
dof_armature_range (This is the range of values added onto the diagonal of the joint inertia matrix.)
push_vel_xy_range (This is the range of magnitudes of a vector added onto the robot’s xy velocity.)
gravity_range (This is the range of values added onto each dimension of [0.0, 0.0, -9.8]. For example,

[0.0, 0.0] would keep gravity constant.)� �
Prompt 10: Initial quadruped prompt (no context). This prompt corresponds to the ’Without Prior’ configuration in Table I.�

The task is to train a quadruped robot to run on a variety of terrains indoor and outdoor. The goal of the robot is to run
forward at 2.0 m/s while remaining steady and safe in the real world.

The robot will be trained in simulation and then deployed in the real world.
Our parameters and valid ranges are the following:

friction_range = [0.0, 10.0]
restitution_range = [0.0, 1.0]
added_mass_range = [-10.0, 10.0]
com_displacement_range = [-10.0, 10.0]
motor_strength_range = [0.0, 2.0]
Kp_factor_range = [0.0, 2.0]
Kd_factor_range = [0.0, 2.0]
dof_stiffness_range = [0.0, 10.0]
dof_damping_range = [0.0, 10.0]
dof_friction_range = [0.0, 10.0]
dof_armature_range = [0.0, 10.0] (This is the range of values added onto the diagonal of the joint inertia
matrix.)
push_vel_xy_range = [0.0, 10.0] (This is the range of magnitudes of a vector added onto the robot’s xy
velocity.)
gravity_range = [-10.0, 10.0] (This is the range of values added onto each dimension of [0.0, 0.0,
-9.8]. For example, [0.0, 0.0] would keep gravity constant.)� �

Prompt 11: Initial quadruped prompt (uninformative context). This prompt corresponds to the ’With Uninformative Prior’ configuration in
Table I.

A5. Success Criteria

Term Success Criteria

Forward Locomotion exp(−(vx − vtx)
2/0.25)

Cube Rotation clip(ωz ,−0.25, 0.25)
Walking Globe 1

TABLE VI: Success criteria for our tasks. vx and vtx are forward velocity and target velocity, respectively. ωz is the angular velocity of the
cube. The success criteria is summed over all steps within an episode.

B. DrEureka Outputs

In this section, we detail the reward functions generated by DrEureka and applied in the training of forward locomotion
and globe walking task.

B1. LLM-Generated Rewards�
def compute_reward(self):

env = self.env # Do not skip this line. Afterwards, use env.{parameter_name} to access parameters of the environment.

# Ideal forward velocity in the x direction
target_velocity_x = 2.0



# Ideal height of the robot’s torso
target_height_z = 0.34

# Compute the velocity reward component
current_velocity_x = env.root_states[:, 7] # Linear velocity in x from the root_states tensor
velocity_error = torch.abs(current_velocity_x - target_velocity_x)
velocity_reward = torch.exp(-velocity_error)

# Compute the height reward component
current_height = env.root_states[:, 2] # Position in z from the root_states tensor
height_error = torch.abs(current_height - target_height_z)
height_reward = torch.exp(-5.0 * height_error) # More weight to maintain height

# Compute the orientation reward component
# Ideal orientation is perpendicular to gravity, i.e., the projected gravity vector should be [0, 0, -1] in the robot’
s frame
ideal_projected_gravity = torch.tensor([0., 0., -1.], device=env.device).repeat((env.num_envs, 1))
orientation_error = torch.norm(env.projected_gravity - ideal_projected_gravity, dim=1)
orientation_reward = torch.exp(-5.0 * orientation_error) # More weight to maintain orientation

# Legs movement within DOF limits reward component
dof_limit_violations = torch.any(

(env.dof_pos < env.dof_pos_limits[:, 0]) | (env.dof_pos > env.dof_pos_limits[:, 1]),
dim=-1)

dof_limit_violations_reward = 1.0 - dof_limit_violations.float() # Penalize if any DOF limit is violated

# Smoothness reward component (penalize the change in actions to encourage smooth movements)
action_difference = torch.norm(env.actions - env.last_actions, dim=1)
smoothness_reward = torch.exp(-0.1 * action_difference)

# Combine reward components
total_reward = velocity_reward * height_reward * orientation_reward * dof_limit_violations_reward * smoothness_reward

# Debug information
reward_components = {"velocity_reward": velocity_reward,

"height_reward": height_reward,
"orientation_reward": orientation_reward,
"dof_limit_violations_reward": dof_limit_violations_reward,
"smoothness_reward": smoothness_reward}

return total_reward, reward_components� �
Prompt 12: Final reward for forward locomotion task from DrEureka.

�
@torch.jit.script
def compute_reward(object_pos: torch.Tensor, object_angvel_finite_diff: torch.Tensor, object_linvel: torch.Tensor,

leap_hand_dof_pos: torch.Tensor, init_pose_buf: torch.Tensor, reset_z_threshold: float) -> Tuple[torch.Tensor, Dict[
str, torch.Tensor]]:
# Constants for tuning the reward
z_axis_index = 2
ang_vel_target = 0.25
max_ang_vel_reward = 2.5
linear_velocity_penalty_coefficient = -3.0
angular_velocity_penalty_coefficient = -2.5
fall_penalty = -5.0
deviation_penalty_coefficient = -0.2

# Reward for positive angular velocity around the z-axis.
ang_z_vel = object_angvel_finite_diff[:, z_axis_index]
ang_z_vel_reward = torch.where(ang_z_vel > ang_vel_target,

ang_vel_target + (1 - torch.exp(ang_vel_target - ang_z_vel)),
ang_z_vel)

ang_z_vel_reward = torch.clamp(ang_z_vel_reward, max=max_ang_vel_reward)

# Penalize linear velocity to ensure the cube remains steady
lin_vel_penalty = linear_velocity_penalty_coefficient * torch.norm(object_linvel, dim=1)

# Penalize the cube falling out of the hand
object_fall_penalty = torch.where(object_pos[:, z_axis_index] < reset_z_threshold,

fall_penalty * torch.ones_like(object_pos[:, 0]),
torch.zeros_like(object_pos[:, 0]))

# Penalize deviation from initial finger positions
deviation_penalty = deviation_penalty_coefficient * torch.norm(leap_hand_dof_pos - init_pose_buf, dim=1)

# Total reward
total_reward = ang_z_vel_reward + lin_vel_penalty + object_fall_penalty + deviation_penalty

# Reward components dictionary for potential debugging or analysis
reward_components = {



"angular_velocity_reward": ang_z_vel_reward,
"linear_velocity_penalty": lin_vel_penalty,
"fall_penalty": object_fall_penalty,
"deviation_penalty": deviation_penalty

}

return total_reward, reward_components� �
Prompt 13: Final reward for cube rotation task from DrEureka.�

def _reward_height(self):
env = self.env
height_threshold = 2.0 * env.ball_radius
height_temperature = 7.0 # Fine-tuned temperature parameter
height_exp = torch.exp((env.base_pos[:, 2] - height_threshold) / height_temperature)
height_reward = torch.where(env.base_pos[:, 2] >= height_threshold, height_exp, torch.zeros_like(env.base_pos[:, 2]))
return 1.5 * height_reward # Updated scaling

def _reward_balance(self):
env = self.env
balance_temperature = 5.0 # Fine-tuned temperature parameter
ball_top = env.object_pos_world_frame.clone()
ball_top[:, 2] += env.ball_radius

feet_dist_to_ball_top = torch.norm(env.foot_positions - ball_top.unsqueeze(1), dim=-1)
balance_exp = torch.exp(-feet_dist_to_ball_top / balance_temperature)
balance_reward = torch.mean(balance_exp, dim=-1)
return 2.0 * balance_reward # Updated scaling

def _reward_smooth_actions(self):
env = self.env
action_diff = env.actions - env.last_actions
smooth_actions_reward = -torch.mean(torch.abs(action_diff), dim=-1)
return 1.0 * smooth_actions_reward # Increase scale of smooth_actions_reward

def _reward_penalize_large_actions(self):
env = self.env
large_action_penalty = -torch.mean(torch.abs(env.actions), dim=-1)
return 0.3 * large_action_penalty # Increase scaling for penalize_large_actions� �

Prompt 14: Final reward for globe walking task from DrEureka. Due to a limitation in the original environment’s codebase, the Eureka
reward format here splits each term into a separate function and computes the final reward as a sum of all terms. Besides a minimal change
in the prompt to describe this format, everything else is the same.

B2. LLM-Generated Domain Randomizations

In this section, we provide the examples of domain randomization configurations generated by DrEureka given Reward-Aware
Physics Prior.�
# Friction is important as it affects how the robot interacts with different surfaces (indoor, outdoor).
friction_range = [0.5, 5.0] # Moderate range to cover various surfaces like tiles, grass, dirt, etc.

# Restitution affects how the robot bounces off surfaces or objects; however, for a running task, this might be less
critical.

restitution_range = [0.0, 0.5] # Lower range as we’re not focusing on bouncing, but it’s still relevant for minor impacts
.

# Added mass simulates the effect of carrying additional weight, which could influence stability and motor strength
requirements.

added_mass_range = [-2.0, 2.0] # A moderate range to simulate carrying light payloads or none.

# Center of mass displacement affects stability and maneuverability.
com_displacement_range = [-0.05, 0.05] # Slight displacements to ensure the model can handle minor imbalances.

# Motor strength directly affects the robot’s ability to move and respond to commands.
motor_strength_range = [0.75, 1.75] # A moderate range allowing for variability in motor performance.

# Kp_factor (proportional gain) and Kd_factor (derivative gain) influence the control loop’s responsiveness and stability.
Kp_factor_range = [0.75, 1.5] # A range that allows for experimenting with control responsiveness without becoming

unstable.
Kd_factor_range = [0.75, 1.5] # Similar to Kp to ensure controllability under various conditions.

# Degrees of freedom (DOF) stiffness and damping affect how rigid and shock-absorbing the joints are, respectively.
dof_stiffness_range = [0.2, 0.8] # A range that allows for some variation in joint stiffness without being too rigid or

floppy.
dof_damping_range = [0.1, 0.4] # Provides variability in how the robot absorbs shocks and returns to equilibrium.



# DOF friction and armature values are very specific parameters that could affect energy efficiency and precision in
movements.

dof_friction_range = [0.0, 0.005] # Small range based on the minor impact it has on performance but still considering
efficiency.

dof_armature_range = [0.0, 0.005] # Minimally varies the joint inertia to see the effects on stability and precision.

# Push velocity in the xy plane simulates external forces or disturbances, e.g., wind or collisions.
push_vel_xy_range = [0.0, 0.5] # A range to help the robot learn to stabilize against moderate disturbances.

# Gravity variations can simulate different loading conditions or slight inclines/declines the robot might face.
gravity_range = [-0.2, 0.2] # Small tweaks to represent minor slopes or variations the robot might need to adapt to.

# Note: Each range is chosen with the thought of exposing the robot to a variety of conditions it might face in the real
world

# without making the task unnecessarily difficult to learn within our compute budget.� �
Generation 1: Example DrEureka DR configuration for forward locomotion.�

# HandFriction determines how much grip the hand has on objects. Given real-world materials can vary,
# we should include a range, but it shouldn’t be too broad to maintain gripping capability while ensuring learning

feasibility.
randomizeHandFrictionLower: 0.5
randomizeHandFrictionUpper: 5.0

# HandRestitution reflects the bounce when the hand hits something, which is less critical for this specific task of
rotating a cube,

# yet minor variations could simulate real-world scenarios where the hand might interact with the cube with varying
intensities.

randomizeHandRestitutionLower: 0.0
randomizeHandRestitutionUpper: 0.2

# HandDOFStiffness affects how forcefully the joints can move, which is crucial for controlling the cube rotation.
# A moderate range should allow the policy to adapt to different stiffness levels found in real hardware.
randomizeHandDOFStiffnessLower: 4.0
randomizeHandDOFStiffnessUpper: 8.0

# HandDOFDamping influences how movements are smoothed or resisted by the joints, affecting the control precision.
# Including a range here helps ensure that the policy can deal with varying damping in real hands.
randomizeHandDOFDampingLower: 0.1
randomizeHandDOFDampingUpper: 0.4

# HandDOFFriction affects the internal joint movements. Since real robotic hands might have varying joint frictions,
# a small range can simulate these differences without compromising the hand’s basic functionality.
randomizeHandDOFFrictionLower: 0.01
randomizeHandDOFFrictionUpper: 0.05

# HandDOFArmature refers to the inertia of the hand joints, which could slightly vary in reality but typically remains low
.

# We’ll randomize it minimally as it’s less critical for cube rotation but still worth considering for physical accuracy.
randomizeHandDOFArmatureLower: 0.001
randomizeHandDOFArmatureUpper: 0.005

# ObjectMass is directly measured, but slight variations in mass distribution or accuracy of the measurement can occur.
# Thus, randomizing around the measured value simulates handling cubes of slightly different masses.
randomizeObjectMassLower: 0.04
randomizeObjectMassUpper: 0.05

# ObjectCOM (Center of Mass) might shift slightly in real objects depending on manufacturing variances.
# Small randomization here can help the policy cope with such variances in balancing the cube during rotation.
randomizeObjectCOMLower: -0.005
randomizeObjectCOMUpper: 0.005

# ObjectFriction affects how easily the cube rotates within the grasp. Since surface materials can vary greatly,
# a broader range here assists in preparing the policy for different cube surfaces.
randomizeObjectFrictionLower: 1.0
randomizeObjectFrictionUpper: 8.0

# ObjectRestitution represents how bouncy the cube is when dropped or thrown, which is less relevant for rotations,
# but slight variations might simulate interactions with the environment more realistically.
randomizeObjectRestitutionLower: 0.0
randomizeObjectRestitutionUpper: 0.3� �

Generation 2: Example DrEureka DR configuration for cube rotation.�
# Friction between the robot and the ball is crucial because it affects how well the robot can balance and maneuver on the

ball. Since the real ball can be less predictable, a wider range should promote adaptability.
robot_friction_range = [0.1, 1.0]



# Restitution, or bounciness, will affect how the robot interacts with surfaces upon collision. Though the simulation does
not account for ball deformation, varying restitution can simulate the unpredictability of these interactions.

robot_restitution_range = [0.2, 0.8]

# Since the payload will directly affect the robot’s balance and how it responds to shifts in weight, we allow for
variability but avoid extreme negative values to maintain realism.

robot_payload_mass_range = [0.0, 3.0]

# Center of mass displacement affects balance and stability. Randomization within a moderate range can prepare the robot
for shifts in its own weight distribution.

robot_com_displacement_range = [-0.05, 0.05]

# Motor strength is critical for moving and balancing. A narrow range ensures the robot remains capable of movement but
can adapt to variability in its actuation power.

robot_motor_strength_range = [0.95, 1.05]

# Motor offsets will simulate imperfections in actuator performance. Randomizing this could prepare the robot for real-
world inaccuracies.

robot_motor_offset_range = [-0.005, 0.05]

# The ball’s mass will significantly impact how the robot interacts with it. Since the ball is hollow and can be deformed,
a middle-range should provide a good balance between too light and too heavy.

ball_mass_range = [1.0, 3.0]

# Ball friction and restitution are critical for preparing the robot to interact with a bouncy and deformable ball. These
ranges allow for significant variability.

ball_friction_range = [0.5, 2.5]
ball_restitution_range = [0.4, 0.9]

# Ball drag simulates air resistance, which could affect interactions at higher speeds.
ball_drag_range = [0.1, 0.5]

# The robot might not always operate on similar terrains, so simulating a range of frictions can be beneficial. However,
the restitution of the ground is less critical here.

terrain_ground_friction_range = [0.2, 0.8]
terrain_ground_restitution_range = [0.0, 0.5]

# Terrain roughness could influence balance and traction, so a slight variation can introduce realistic challenges without
overwhelming the learning process.

terrain_tile_roughness_range = [0.02, 0.08]

# Varying the push velocities can help the robot learn to maintain balance against unexpected forces.
robot_push_vel_range = [0.1, 0.4]
ball_push_vel_range = [0.1, 0.4]

# Considering the task does not involve drastic changes in gravity, we only slightly vary this to simulate minor
differences in weight sensation.

gravity_range = [-0.1, 0.1]� �
Generation 3: Example DrEureka DR configuration for globe walking.



Fig. 11: Visualization of DR parameter ranges sampled by DrEureka for forward locomotion: Blue represents the lower bound of the
sampled DR parameter range and red represents the upper bound of the sampled DR parameter range. As shown, the LLM generates a series
of diverse yet reasonable ranges. We also provide the training curves to further illustrate the difference between configurations.



Fig. 12: Forward locomotion training curves for 16 DR configurations. All runs are trained with the same reward function.

B3. LLM Reward Reflection

The following is an example of reward reflection on the challenging Walking Globe task. Provided with task scores and
other training statistics, the LLM is asked to evolve better reward functions.�
Eureka Output:
Here are the reward terms I am planning to implement:
1. height_reward: Encourage the agent to maintain a z-position of at least 2 * ball_radius.
2. balance_reward: Encourage the agent to balance on the ball by minimizing the distance between the feet and the top of

the ball.
3. smooth_actions_reward: Encourage smooth actions to reduce jittery or fast actions.

‘‘‘python
def _reward_height(self):

env = self.env
height_threshold = 2.0 * env.ball_radius
height_reward = torch.where(env.base_pos[:, 2] >= height_threshold, torch.ones_like(env.base_pos[:, 2]), torch.
zeros_like(env.base_pos[:, 2]))
return 1.0 * height_reward

def _reward_balance(self):
env = self.env
ball_top = env.object_pos_world_frame + torch.tensor([0.0, 0.0, env.ball_radius], device=env.device).unsqueeze(0)
feet_dist_to_ball_top = torch.norm(env.foot_positions - ball_top.unsqueeze(1), dim=-1)
balance_reward = 1.0 - torch.mean(feet_dist_to_ball_top, dim=-1)
return 1.0 * balance_reward

def _reward_smooth_actions(self):
env = self.env
action_diff = env.actions - env.last_actions
smooth_actions_reward = -torch.mean(torch.abs(action_diff), dim=-1)
return 0.1 * smooth_actions_reward

‘‘‘

The height_reward motivates the agent to maintain a z-position above the threshold. The balance_reward ensures the agent
learns to balance on the ball by minimizing the distance between the feet and the top of the ball. The
smooth_actions_reward encourages the agent to take smoother actions rather than jittery or too fast actions that may
burn out the motors.

####################################################################################################

Reward Reflection:
We trained a RL policy using the provided reward function code and tracked the values of the individual components in the

reward function as well as global policy metrics such as task score and episode lengths after every 500 epochs and the
maximum, mean, minimum values encountered:

task score: [’12.42’, ’62.72’, ’67.46’, ’69.36’, ’70.67’, ’80.36’, ’112.15’, ’152.94’, ’185.67’, ’241.25’], Max: 285.75,
Mean: 115.54, Min: 12.42

episode length: [’11.45’, ’62.74’, ’67.35’, ’69.35’, ’70.68’, ’79.95’, ’111.51’, ’152.29’, ’184.50’, ’237.52’], Max:
276.88, Mean: 115.86, Min: 11.45



rew balance: [’8.28’, ’39.74’, ’42.03’, ’42.49’, ’43.45’, ’50.95’, ’75.72’, ’108.42’, ’135.23’, ’179.91’], Max: 217.18,
Mean: 80.06, Min: 8.28

rew height: [’12.29’, ’51.43’, ’55.16’, ’57.51’, ’58.48’, ’66.92’, ’95.47’, ’135.24’, ’167.38’, ’222.18’], Max: 267.01,
Mean: 100.62, Min: 12.29

rew smooth actions: [’-1.30’, ’-9.17’, ’-11.89’, ’-13.57’, ’-15.27’, ’-19.87’, ’-34.40’, ’-47.73’, ’-56.97’, ’-72.17’],
Max: -1.30, Mean: -31.26, Min: -87.12

rew total: [’19.26’, ’81.99’, ’85.29’, ’86.43’, ’86.66’, ’98.00’, ’136.80’, ’195.93’, ’245.64’, ’329.93’], Max: 397.07,
Mean: 149.43, Min: 19.26

Please carefully analyze the policy feedback and provide a new, improved reward function that can better solve the task.
Some helpful tips for analyzing the policy feedback:
(1) If the task score is always near zero, then you must rewrite the entire reward function
(2) If the values for a certain reward component are near identical throughout, then this means RL is not able to
optimize this component as it is written. You may consider

(a) Changing its scale or the value of its temperature parameter
(b) Re-writing the reward component
(c) Discarding the reward component

(3) If some reward components magnitude is significantly larger, then you must re-scale its value to a proper range
Please analyze each existing reward component in the suggested manner above first, and then write the reward function code

. The output of the reward function should be only your reward value.
The code output should be formatted as a python code string: "‘‘‘python ... ‘‘‘".

Some helpful tips for writing the reward function code:
(1) You may find it helpful to normalize the reward to a fixed range by applying transformations like torch.exp to the
overall reward or its components

(2) If you choose to transform a reward component, then you must also introduce a temperature parameter inside the
transformation function; this parameter must be a named variable in the reward function and it must not be an input
variable. Each transformed reward component should have its own temperature variable
(3) Most importantly, the reward codes must only use attributes of the provided environment object (namely, variables
that have prefix env.). Under no circumstance can you introduce new input variables.

####################################################################################################

Eureka Output:
From the policy feedback, it seems that the reward for height (’rew height’) and balance (’rew balance’) are significant

and show improvement, but the reward for smooth actions (’rew smooth actions’) needs more optimization. I will
increase the scale for smooth_actions_reward and introduce an exponential reward component for height_reward so that
the reward gradient is smoother. Here is the updated reward function:

‘‘‘python
def _reward_height(self):

env = self.env
height_threshold = 2.0 * env.ball_radius
height_temperature = 10.0 # new temperature parameter for exponential transformation
height_exp = torch.exp((env.base_pos[:, 2] - height_threshold) / height_temperature)
height_reward = torch.where(env.base_pos[:, 2] >= height_threshold, height_exp, torch.zeros_like(env.base_pos[:, 2]))
return 2.0 * height_reward # increase scale of height_reward

def _reward_balance(self):
env = self.env
ball_top = env.object_pos_world_frame + torch.tensor([0.0, 0.0, env.ball_radius], device=env.device).unsqueeze(0)
feet_dist_to_ball_top = torch.norm(env.foot_positions - ball_top.unsqueeze(1), dim=-1)
balance_reward = 1.0 - torch.mean(feet_dist_to_ball_top, dim=-1)
return 1.0 * balance_reward

def _reward_smooth_actions(self):
env = self.env
action_diff = env.actions - env.last_actions
smooth_actions_reward = -torch.mean(torch.abs(action_diff), dim=-1)
return 0.5 * smooth_actions_reward # increase scale of smooth_actions_reward

‘‘‘

In this updated reward function, I introduced a temperature parameter (‘height_temperature‘) and applied an exponential
transformation to the height_reward so that the reward gradient is smoother. I also multiplied the height_reward scale
by 2 to make it more significant. Finally, I increased the scale of the smooth_actions_reward by 0.5 to encourage
smoother actions more than before, which will help further improve the policy.

####################################################################################################

Reward Reflection:
We trained a RL policy using the provided reward function code and tracked the values of the individual components in the

reward function as well as global policy metrics such as task score and episode lengths after every 500 epochs and the
maximum, mean, minimum values encountered:

task score: [’12.42’, ’65.13’, ’71.19’, ’76.92’, ’100.98’, ’320.91’, ’602.55’, ’741.82’, ’865.37’, ’924.64’], Max:
1040.59, Mean: 407.71, Min: 12.42

episode length: [’11.45’, ’65.14’, ’71.13’, ’76.80’, ’100.93’, ’330.90’, ’608.89’, ’767.77’, ’903.78’, ’903.98’], Max:
1074.86, Mean: 409.03, Min: 11.45

rew balance: [’8.28’, ’41.57’, ’44.23’, ’47.64’, ’64.50’, ’237.34’, ’464.35’, ’574.94’, ’673.07’, ’722.61’], Max: 811.20,
Mean: 310.16, Min: 8.28

rew height: [’25.01’, ’108.71’, ’122.09’, ’133.27’, ’181.14’, ’620.04’, ’1187.27’, ’1468.28’, ’1718.10’, ’1837.45’], Max:
2076.23, Mean: 797.53, Min: 25.01

rew smooth actions: [’-6.52’, ’-35.68’, ’-38.78’, ’-42.31’, ’-66.38’, ’-271.25’, ’-508.06’, ’-624.86’, ’-740.29’, ’-808.17
’], Max: -6.52, Mean: -340.10, Min: -911.98

rew total: [’26.76’, ’114.60’, ’127.55’, ’138.60’, ’179.26’, ’586.13’, ’1143.56’, ’1418.36’, ’1650.88’, ’1751.89’], Max:



1975.46, Mean: 767.58, Min: 26.76

...� �
Generation 4: Example DrEureka reward reflection for globe walking. By modifying the scale for one term and changing the functional
form of another, the LLM increases the task score average from 115 to 407.

C. Mathematical Representation of DrEureka Rewards

In this section, we convert the programmatic human-written and LLM-generated reward functions into mathematical expressions
for comparison.

Symbol Explanation

vtx, vx Agent’s and target’s linear velocity along the x-axis.
ωt
z , ωz Agent’s and target’s angular velocity around the z-axis.

vz Velocity along the z-axis.
ωxy Velocities in the roll and pitch directions.
ptz , pz Agent’s and target’s base height.
gxy Base orientation in the horizontal plane.
j, jl, jh Joint position and lower, upper joint limits.
τ Applied torques.
j̈ Joint acceleration.
at, at−1 Consecutive actions to measure smoothness and action rate.
tair Feet airtime during next contact transitions.
foot_position, ball_top_position 3D Positions of the robot foot and the top of the ball.

TABLE VII: Explanation of symbols used in forward locomotion reward, Tables VIII, IX, XVI.

Reward Component Math Expression

Linear velocity tracking 0.02 · exp{−(vx − vtx)
2/0.25}

Angular velocity tracking 0.01 · exp{−(ωz − ωt
z)

2/0.25}
Z-velocity penalty −0.04 · v2z
Roll-pitch-velocity penalty −0.001 · |ωxy |2
Base height penalty −0.6 · (pz − ptz)

2

Base orientation penalty −0.1 · |gxy |2
Collision penalty −0.02 · 1[collision]
Joint limit penalty −0.2 · (max(0, jl − j) + max(0, j − jh))
Torque penalty −2e− 6 · |τ |2
Joint acceleration penalty −5e− 9 · |j̈|2
Action rate penalty −2e− 4 · |at − at−1|2
Feet airtime 0.02 ·

∑
tair · 1[next contact]

TABLE VIII: Human-written reward function for forward
locomotion. The total reward is the sum of the components
above.

Reward Component Math Expression

Forward velocity exp{−(vx − vtx)
2/2}

Action smoothness −0.25 · |at − at−1|
Angular velocity −0.25 · ∥ωxyz∥2
Eureka reward Forward velocity + Action smoothness

+ Angular velocity

TABLE IX: Final reward for forward locomotion from Eureka
without safety instruction.

Reward Component Math Expression

Height 1.5 · 1{ptz>pz} · exp{ ptz−pz
7

}
Balance 2 · exp{−∥foot_position−ball_top_position∥

5
}

Action smoothness −1 · |at − at−1|
Large Action Penalty −0.3 · |at|
Eureka reward Height + Balance +

Action smoothness + Large Action Penalty

TABLE X: Final reward for the walking globe task.



Symbol Explanation

pz Height of the object.
ωz Angular velocity vector of the object along the z-axis.
v Linear velocity vector of the object.
q Current joint angles of the hand.
q0 Initial joint angles of the hand.
zthreshold Threshold z-axis position below which the object is considered fallen.
α Target angular velocity around the z-axis. Set to 0.25 in Table XIII.
τi Applied torque of motor i.
W Work done by the motors.

TABLE XI: Explanations of symbols used in cube rotation reward, Tables XII, XIII.

Reward Component Formula
Angular Velocity Reward 1.25 · clip(ωz ,−0.25, 0.25)

Linear Velocity Penalty Pv −0.3 · ∥v∥1
Pose Difference Penalty Pd −0.1∥q− q0∥

Torque Penalty Ptorque −0.1 · sum(τ2i )
Work Penalty Pwork −1 ·W

Object Falling Penalty Pf

{
−10 if pz < zthreshold

0 otherwise

TABLE XII: Human-written reward function for cube rotation. The total reward is the sum of all the components.

Reward Component Math Expression

Angular Velocity Reward Rωz min

({
α+ (1− exp{α− ωz} if wz > α

ωz otherwise
, 2.5

)
Linear Velocity Penalty Pv −3 · ∥v∥

Object Falling Penalty Pf

{
−5 if pz < zthreshold

0 otherwise
Pose Difference Penalty Pd −0.2∥q− q0∥
Eureka reward Rωz + Pv + Pf + Pd

TABLE XIII: Final reward for cube rotation task from DrEureka.

D. Experimental Setup

D1. Forward Locomotion

For the forward locomotion task, our policy takes joint positions, joint velocities, a gravity vector, and a history of past
observations and actions as input. It produces joint position commands for a PD controller, which has a proportional gain of 20
and derivative gain of 0.5.

We extend the simulation setup from Margolis et al. [25], and we include additional domain randomization parameters,
specifically joint stiffness, damping, friction, and armature that were not in the their work. These parameters, along with the
others in Table XIV, were randomized during training. We chose these parameters based on IsaacGym’s documentation on
rigid body, rigid shape, and DOF properties2.



Property Valid Range RAPP Search Range

friction [0,∞) [0, 10]
restitution [0, 1] [0, 1]
payload mass (−∞,∞) [−10, 10]
center of mass displacement (−∞,∞) [−10, 10]
motor strength [0,∞) [0, 2]
scaling factors for proportional gain [0,∞) [0, 2]
scaling factors for derivative gain [0,∞) [0, 2]
push velocity [0,∞) [0, 10]
gravity (−∞,∞) [−10, 10]

dof stiffness [0,∞) [0, 10]
dof damping [0,∞) [0, 10]
dof friction [0,∞) [0, 10]
dof armature [0,∞) [0, 10]

TABLE XIV: Domain randomization parameters for forward locomotion, along with their valid ranges and RAPP search ranges.
Though the scale of these parameters differs, each RAPP range is chosen from one of four general-purpose ranges (0_to_infty, 0_to_1,
centered_0, centered_1).

D2. Cube Rotation

For the cube rotation task, we follow the training and deployment workflow outlined by the LeapHand authors. For training
all the policies, we use the same GRU architecture that receives 16 joint angles as input and outputs 16 target joint angles. We
also follow the LeapHand training code to randomize the initial pose of the hand and the size of the cube. When deploying
trained policies in the real world, the target joint angles are passed as position commands to a PID controller running at 20 Hz.

In addition to the initial pose of the hand and the size of the cube, the Human Designed policy is trained with DR in
object mass, object center of mass, hand friction, stiffness and damping. In DrEureka, we extend the simulation setup to
include additional domain randomization parameters, such as hand restitution, joint friction, armature, object friction and object
restitution. These parameters, along with the others, are detailed in Table XV.

Property Valid Range RAPP Search Range

object mass [0,∞) [0.01, 1]
object center of mass [0,∞) [−0.01, 0.01]
hand friction [0,∞) [0, 10]
dof stiffness [0,∞) [1, 10]
dof damping [0,∞) [0, 0.5]

hand restitution [0, 1] [0, 1]
dof friction [0,∞) [0, 0.1]
armature [0,∞) [0, 0.01]
object friction [0,∞) [0, 10]
object restitution [0, 1] [0, 1]

TABLE XV: Domain randomization parameters for cube rotation, along with their valid ranges and RAPP search ranges.

D3. Globe Walking

For globe walking, we largely extend the framework from forward locomotion, with a few exceptions. First, the policy takes
in an additional yaw sensor as input. Second, to account for actuator inaccuracies in the real world, we use an actuator network
from Ji et al. [70]; this network is pretrained on log data to predict real robot torques from joint commands, and we use it to
compute torques from actions in simulation when training the quadruped. Third, we have additional domain randomization
parameters, shown in Table XVI.

In the real world, we deploy our quadruped on a 34-inch yoga ball. We did not have a stable pole to tether our quadruped,
so we instead resort to a human holding the end of the leash; however, we are careful to hold the leash parallel to the ground

2Relevant functions in the documentation are isaacgym.gymapi.RigidBodyProperties, isaacgym.gymapi.RigidShapeProperties,
isaacgym.gymapi.Gym.get_actor_dof_properties(). Note that among these properties, there are a few fields that we found had no effect in
simulation. We discarded them for our domain randomization.



to ensure that the human does not provide any upward force that might aid the robot, and our sole purpose is to keep the robot
within a safe radius.

Property Valid Range RAPP Search Range

robot friction [0,∞) [0, 10]
robot restitution [0, 1] [0, 1]
robot payload mass (−∞,∞) [−10, 10]
robot center of mass displacement (−∞,∞) [−10, 10]
robot motor strength [0,∞) [0, 2]
robot motor offset (−∞,∞) [−10, 10]

ball mass [0,∞) [0, 10]
ball friction [0,∞) [0, 10]
ball restitution [0, 1] [0, 1]
ball drag [0,∞) [0, 10]

terrain friction [0,∞) [0, 10]
terrain restitution [0, 1] [0, 1]
terrain roughness [0,∞) [0, 10]

robot push velocity [0,∞) [0, 10]
ball push velocity [0,∞) [0, 10]
gravity (−∞,∞) [−10, 10]

TABLE XVI: Domain randomization parameters for globe walking, along with their valid ranges and RAPP search ranges.

E. CEM and BayRn Baseline Details

In this section, we detail our DR baseline procedure for Cross Entropy Method (CEM) [16, 66, 67] and Baysian Optimization
(BayRn) [49, 68]. On a high level, both algorithms optimize DR parameters by repeatedly training and evaluating policies
in real. Over multiple iterations, CEM trains policies on DR configurations Ti, . . . , Tj sampled from distribution p, evaluates
their real-world performance Ji, . . . , Jj , and updates p to fit the k "elite" samples with highest J . BayRn initially trains and
evaluates multiple sampled DR configurations T0, . . . , Ti, then fits a surrogate model G on (T0, J0), . . . , (Ti, Ji); next, for
multiple iterations, BayRn uses G and acquisition function a to select the next DR configuration Tj to train and evaluate, then
updates G with (Tj , Jj).

For BayRn, we select the widely used Matérn 2.5 kernel and the Upper Confidence Bound (UCB) as the acquisition function
with parameter κ = 5 and ξ = 1. To maintain the same sample complexity of 16, we run CEM for 4 iterations with 4 samples
each and BayRn with 8 initial samples, then 8 iterations with 1 sample each.
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